Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
|
5 |
class XylariaChat:
|
6 |
def __init__(self):
|
@@ -9,178 +10,101 @@ class XylariaChat:
|
|
9 |
if not self.hf_token:
|
10 |
raise ValueError("HuggingFace token not found in environment variables")
|
11 |
|
12 |
-
# Initialize the inference
|
13 |
-
self.
|
14 |
model="Qwen/QwQ-32B-Preview",
|
15 |
api_key=self.hf_token
|
16 |
)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Initialize conversation history and persistent memory
|
19 |
self.conversation_history = []
|
20 |
self.persistent_memory = {}
|
21 |
-
|
22 |
-
# System prompt with more detailed instructions
|
23 |
-
self.system_prompt = """You are Xylaria 1.4 Senoa, an AI assistant developed by SK MD Saad Amin.
|
24 |
-
Key capabilities:
|
25 |
-
- Provide helpful and engaging responses
|
26 |
-
- Generate links for images when requested
|
27 |
-
- Maintain context across the conversation
|
28 |
-
- Be creative and supportive
|
29 |
-
- Remember key information shared by the user"""
|
30 |
-
|
31 |
-
def store_information(self, key, value):
|
32 |
-
"""Store important information in persistent memory"""
|
33 |
-
self.persistent_memory[key] = value
|
34 |
-
|
35 |
-
def retrieve_information(self, key):
|
36 |
-
"""Retrieve information from persistent memory"""
|
37 |
-
return self.persistent_memory.get(key)
|
38 |
|
39 |
def get_response(self, user_input):
|
40 |
-
|
41 |
messages = [
|
42 |
-
{"role": "system", "content":
|
43 |
*self.conversation_history,
|
44 |
{"role": "user", "content": user_input}
|
45 |
]
|
46 |
|
47 |
-
# Add persistent memory context if available
|
48 |
-
if self.persistent_memory:
|
49 |
-
memory_context = "Remembered Information:\n" + "\n".join(
|
50 |
-
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
|
51 |
-
)
|
52 |
-
messages.insert(1, {"role": "system", "content": memory_context})
|
53 |
-
|
54 |
-
# Generate response with streaming
|
55 |
try:
|
56 |
-
|
57 |
messages=messages,
|
58 |
temperature=0.5,
|
59 |
max_tokens=10240,
|
60 |
top_p=0.7,
|
61 |
stream=True
|
62 |
)
|
63 |
-
|
64 |
-
return stream
|
65 |
-
|
66 |
except Exception as e:
|
67 |
return f"Error generating response: {str(e)}"
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def create_interface(self):
|
70 |
def streaming_response(message, chat_history):
|
71 |
-
|
72 |
response_stream = self.get_response(message)
|
73 |
-
|
74 |
-
# If it's an error, return immediately
|
75 |
if isinstance(response_stream, str):
|
76 |
return "", chat_history + [[message, response_stream]]
|
77 |
|
78 |
-
# Prepare for streaming response
|
79 |
full_response = ""
|
80 |
updated_history = chat_history + [[message, ""]]
|
81 |
-
|
82 |
-
# Streaming output
|
83 |
for chunk in response_stream:
|
84 |
if chunk.choices[0].delta.content:
|
85 |
-
|
86 |
-
full_response += chunk_content
|
87 |
-
|
88 |
-
# Update the last message in chat history with partial response
|
89 |
updated_history[-1][1] = full_response
|
90 |
yield "", updated_history
|
91 |
|
92 |
-
|
93 |
-
self.conversation_history.append(
|
94 |
-
{"role": "user", "content": message}
|
95 |
-
)
|
96 |
-
self.conversation_history.append(
|
97 |
-
{"role": "assistant", "content": full_response}
|
98 |
-
)
|
99 |
-
|
100 |
-
# Limit conversation history to prevent token overflow
|
101 |
if len(self.conversation_history) > 10:
|
102 |
self.conversation_history = self.conversation_history[-10:]
|
103 |
-
|
104 |
-
# Custom CSS for Inter font
|
105 |
-
custom_css = """
|
106 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
107 |
-
|
108 |
-
body, .gradio-container {
|
109 |
-
font-family: 'Inter', sans-serif !important;
|
110 |
-
}
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
.gradio-container textarea,
|
118 |
-
.gradio-container button {
|
119 |
-
font-family: 'Inter', sans-serif !important;
|
120 |
-
}
|
121 |
-
"""
|
122 |
|
123 |
-
with gr.Blocks(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
)
|
131 |
-
|
132 |
-
# Input row with improved layout
|
133 |
-
with gr.Row():
|
134 |
-
txt = gr.Textbox(
|
135 |
-
show_label=False,
|
136 |
-
placeholder="Type your message...",
|
137 |
-
container=False,
|
138 |
-
scale=4
|
139 |
-
)
|
140 |
-
btn = gr.Button("Send", scale=1)
|
141 |
-
|
142 |
-
# Clear history and memory buttons
|
143 |
-
clear = gr.Button("Clear Conversation")
|
144 |
-
clear_memory = gr.Button("Clear Memory")
|
145 |
-
|
146 |
-
# Submit functionality with streaming
|
147 |
-
btn.click(
|
148 |
-
fn=streaming_response,
|
149 |
-
inputs=[txt, chatbot],
|
150 |
-
outputs=[txt, chatbot]
|
151 |
-
)
|
152 |
-
txt.submit(
|
153 |
-
fn=streaming_response,
|
154 |
-
inputs=[txt, chatbot],
|
155 |
-
outputs=[txt, chatbot]
|
156 |
-
)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
queue=False
|
164 |
-
)
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
queue=False
|
172 |
-
)
|
173 |
-
|
174 |
return demo
|
175 |
|
176 |
# Launch the interface
|
177 |
def main():
|
178 |
chat = XylariaChat()
|
179 |
interface = chat.create_interface()
|
180 |
-
interface.launch(
|
181 |
-
share=True, # Optional: create a public link
|
182 |
-
debug=True # Show detailed errors
|
183 |
-
)
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
-
main()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from PIL import Image
|
5 |
|
6 |
class XylariaChat:
|
7 |
def __init__(self):
|
|
|
10 |
if not self.hf_token:
|
11 |
raise ValueError("HuggingFace token not found in environment variables")
|
12 |
|
13 |
+
# Initialize the inference clients
|
14 |
+
self.chat_client = InferenceClient(
|
15 |
model="Qwen/QwQ-32B-Preview",
|
16 |
api_key=self.hf_token
|
17 |
)
|
18 |
+
self.image_client = InferenceClient(
|
19 |
+
model="SG161222/RealVisXL_V4.0",
|
20 |
+
api_key=self.hf_token
|
21 |
+
)
|
22 |
|
23 |
# Initialize conversation history and persistent memory
|
24 |
self.conversation_history = []
|
25 |
self.persistent_memory = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def get_response(self, user_input):
|
28 |
+
"""Get text-based response from the model."""
|
29 |
messages = [
|
30 |
+
{"role": "system", "content": "Your name is Xylaria 1.4 Senoa, an advanced ai model developed by sk md saad amin"},
|
31 |
*self.conversation_history,
|
32 |
{"role": "user", "content": user_input}
|
33 |
]
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
+
response_stream = self.chat_client.chat.completions.create(
|
37 |
messages=messages,
|
38 |
temperature=0.5,
|
39 |
max_tokens=10240,
|
40 |
top_p=0.7,
|
41 |
stream=True
|
42 |
)
|
43 |
+
return response_stream
|
|
|
|
|
44 |
except Exception as e:
|
45 |
return f"Error generating response: {str(e)}"
|
46 |
|
47 |
+
def generate_image(self, prompt):
|
48 |
+
"""Generate image based on prompt."""
|
49 |
+
try:
|
50 |
+
# Create an image from the prompt
|
51 |
+
image = self.image_client.text_to_image(prompt)
|
52 |
+
return image
|
53 |
+
except Exception as e:
|
54 |
+
return f"Error generating image: {str(e)}"
|
55 |
+
|
56 |
def create_interface(self):
|
57 |
def streaming_response(message, chat_history):
|
58 |
+
"""Handle text response streaming."""
|
59 |
response_stream = self.get_response(message)
|
|
|
|
|
60 |
if isinstance(response_stream, str):
|
61 |
return "", chat_history + [[message, response_stream]]
|
62 |
|
|
|
63 |
full_response = ""
|
64 |
updated_history = chat_history + [[message, ""]]
|
|
|
|
|
65 |
for chunk in response_stream:
|
66 |
if chunk.choices[0].delta.content:
|
67 |
+
full_response += chunk.choices[0].delta.content
|
|
|
|
|
|
|
68 |
updated_history[-1][1] = full_response
|
69 |
yield "", updated_history
|
70 |
|
71 |
+
self.conversation_history.append({"role": "user", "content": message})
|
72 |
+
self.conversation_history.append({"role": "assistant", "content": full_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if len(self.conversation_history) > 10:
|
74 |
self.conversation_history = self.conversation_history[-10:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
def generate_image_response(prompt):
|
77 |
+
"""Handle image generation."""
|
78 |
+
if not prompt.strip():
|
79 |
+
return None
|
80 |
+
return self.generate_image(prompt)
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
chatbot = gr.Chatbot(label="Xylaria 1.4 Senoa", height=500)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
txt = gr.Textbox(show_label=False, placeholder="Type your message...", scale=8)
|
87 |
+
send_btn = gr.Button("💬", scale=1)
|
88 |
+
img_btn = gr.Button("🖼️", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
clear_btn = gr.Button("Clear Conversation")
|
91 |
+
clear_memory_btn = gr.Button("Clear Memory")
|
92 |
+
|
93 |
+
send_btn.click(fn=streaming_response, inputs=[txt, chatbot], outputs=[txt, chatbot])
|
94 |
+
txt.submit(fn=streaming_response, inputs=[txt, chatbot], outputs=[txt, chatbot])
|
|
|
|
|
95 |
|
96 |
+
img_btn.click(fn=generate_image_response, inputs=txt, outputs=chatbot)
|
97 |
+
|
98 |
+
clear_btn.click(fn=lambda: None, inputs=None, outputs=chatbot)
|
99 |
+
clear_memory_btn.click(fn=lambda: None, inputs=None, outputs=[])
|
100 |
+
|
|
|
|
|
|
|
101 |
return demo
|
102 |
|
103 |
# Launch the interface
|
104 |
def main():
|
105 |
chat = XylariaChat()
|
106 |
interface = chat.create_interface()
|
107 |
+
interface.launch(share=True, debug=True)
|
|
|
|
|
|
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
main()
|