Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,24 +21,24 @@ class XylariaChat:
|
|
| 21 |
self.hf_token = os.getenv("HF_TOKEN")
|
| 22 |
if not self.hf_token:
|
| 23 |
raise ValueError("HuggingFace token not found in environment variables")
|
| 24 |
-
|
| 25 |
# Initialize the inference client with the Qwen model
|
| 26 |
self.client = InferenceClient(
|
| 27 |
-
model="Qwen/QwQ-32B-Preview",
|
| 28 |
api_key=self.hf_token
|
| 29 |
)
|
| 30 |
-
|
| 31 |
# Image captioning API setup
|
| 32 |
-
self.image_api_url = "https://api-inference.huggingface.co/models/
|
| 33 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
| 34 |
-
|
| 35 |
# Initialize conversation history and persistent memory
|
| 36 |
self.conversation_history = []
|
| 37 |
self.persistent_memory = {}
|
| 38 |
-
|
| 39 |
# System prompt with more detailed instructions
|
| 40 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin(india). You should think step-by-step."""
|
| 41 |
-
|
| 42 |
def store_information(self, key, value):
|
| 43 |
"""Store important information in persistent memory"""
|
| 44 |
self.persistent_memory[key] = value
|
|
@@ -50,31 +50,31 @@ class XylariaChat:
|
|
| 50 |
|
| 51 |
def reset_conversation(self):
|
| 52 |
"""
|
| 53 |
-
Completely reset the conversation history, persistent memory,
|
| 54 |
and clear API-side memory
|
| 55 |
"""
|
| 56 |
# Clear local memory
|
| 57 |
self.conversation_history = []
|
| 58 |
self.persistent_memory.clear()
|
| 59 |
-
|
| 60 |
-
# Reinitialize the client
|
| 61 |
try:
|
| 62 |
self.client = InferenceClient(
|
| 63 |
-
model="Qwen/QwQ-32B-Preview",
|
| 64 |
api_key=self.hf_token
|
| 65 |
)
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error resetting API client: {e}")
|
| 68 |
-
|
| 69 |
return None # To clear the chatbot interface
|
| 70 |
|
| 71 |
def caption_image(self, image):
|
| 72 |
"""
|
| 73 |
Caption an uploaded image using Hugging Face API
|
| 74 |
-
|
| 75 |
Args:
|
| 76 |
image (str): Base64 encoded image or file path
|
| 77 |
-
|
| 78 |
Returns:
|
| 79 |
str: Image caption or error message
|
| 80 |
"""
|
|
@@ -89,83 +89,83 @@ class XylariaChat:
|
|
| 89 |
if image.startswith('data:image'):
|
| 90 |
image = image.split(',')[1]
|
| 91 |
data = base64.b64decode(image)
|
| 92 |
-
# If image is a file-like object
|
| 93 |
else:
|
| 94 |
data = image.read()
|
| 95 |
-
|
| 96 |
# Send request to Hugging Face API
|
| 97 |
response = requests.post(
|
| 98 |
-
self.image_api_url,
|
| 99 |
-
headers=self.image_api_headers,
|
| 100 |
data=data
|
| 101 |
)
|
| 102 |
-
|
| 103 |
# Check response
|
| 104 |
if response.status_code == 200:
|
| 105 |
caption = response.json()[0].get('generated_text', 'No caption generated')
|
| 106 |
return caption
|
| 107 |
else:
|
| 108 |
-
return f"Error captioning image: {response.text}"
|
| 109 |
-
|
| 110 |
except Exception as e:
|
| 111 |
return f"Error processing image: {str(e)}"
|
| 112 |
|
| 113 |
def get_response(self, user_input, image=None):
|
| 114 |
"""
|
| 115 |
Generate a response using chat completions with improved error handling
|
| 116 |
-
|
| 117 |
Args:
|
| 118 |
user_input (str): User's message
|
| 119 |
image (optional): Uploaded image
|
| 120 |
-
|
| 121 |
Returns:
|
| 122 |
Stream of chat completions or error message
|
| 123 |
"""
|
| 124 |
try:
|
| 125 |
# Prepare messages with conversation context and persistent memory
|
| 126 |
messages = []
|
| 127 |
-
|
| 128 |
# Add system prompt as first message
|
| 129 |
messages.append(ChatMessage(
|
| 130 |
-
role="system",
|
| 131 |
content=self.system_prompt
|
| 132 |
-
).to_dict())
|
| 133 |
-
|
| 134 |
# Add persistent memory context if available
|
| 135 |
if self.persistent_memory:
|
| 136 |
memory_context = "Remembered Information:\n" + "\n".join(
|
| 137 |
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
|
| 138 |
)
|
| 139 |
messages.append(ChatMessage(
|
| 140 |
-
role="system",
|
| 141 |
content=memory_context
|
| 142 |
-
).to_dict())
|
| 143 |
-
|
| 144 |
# Convert existing conversation history to ChatMessage objects and then to dictionaries
|
| 145 |
for msg in self.conversation_history:
|
| 146 |
messages.append(ChatMessage(
|
| 147 |
-
role=msg['role'],
|
| 148 |
content=msg['content']
|
| 149 |
-
).to_dict())
|
| 150 |
-
|
| 151 |
# Process image if uploaded
|
| 152 |
if image:
|
| 153 |
image_caption = self.caption_image(image)
|
| 154 |
user_input = f"Image description: {image_caption}\n\nUser's message: {user_input}"
|
| 155 |
-
|
| 156 |
# Add user input
|
| 157 |
messages.append(ChatMessage(
|
| 158 |
-
role="user",
|
| 159 |
content=user_input
|
| 160 |
-
).to_dict())
|
| 161 |
-
|
| 162 |
# Generate response with streaming
|
| 163 |
-
stream = self.client.
|
|
|
|
| 164 |
model="Qwen/QwQ-32B-Preview",
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
top_p=0.7,
|
| 169 |
stream=True
|
| 170 |
)
|
| 171 |
|
|
@@ -175,6 +175,25 @@ class XylariaChat:
|
|
| 175 |
print(f"Detailed error in get_response: {e}")
|
| 176 |
return f"Error generating response: {str(e)}"
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def create_interface(self):
|
| 179 |
def streaming_response(message, chat_history, image_filepath):
|
| 180 |
# Check if an image was actually uploaded
|
|
@@ -200,7 +219,7 @@ class XylariaChat:
|
|
| 200 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 201 |
chunk_content = chunk.choices[0].delta.content
|
| 202 |
full_response += chunk_content
|
| 203 |
-
|
| 204 |
# Update the last message in chat history with partial response
|
| 205 |
updated_history[-1][1] = full_response
|
| 206 |
yield "", updated_history, None
|
|
@@ -232,8 +251,8 @@ class XylariaChat:
|
|
| 232 |
.chatbot-container .message {
|
| 233 |
font-family: 'Inter', sans-serif !important;
|
| 234 |
}
|
| 235 |
-
.gradio-container input,
|
| 236 |
-
.gradio-container textarea,
|
| 237 |
.gradio-container button {
|
| 238 |
font-family: 'Inter', sans-serif !important;
|
| 239 |
}
|
|
|
|
| 21 |
self.hf_token = os.getenv("HF_TOKEN")
|
| 22 |
if not self.hf_token:
|
| 23 |
raise ValueError("HuggingFace token not found in environment variables")
|
| 24 |
+
|
| 25 |
# Initialize the inference client with the Qwen model
|
| 26 |
self.client = InferenceClient(
|
| 27 |
+
model="Qwen/QwQ-32B-Preview", # Using the specified model
|
| 28 |
api_key=self.hf_token
|
| 29 |
)
|
| 30 |
+
|
| 31 |
# Image captioning API setup
|
| 32 |
+
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
| 33 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
| 34 |
+
|
| 35 |
# Initialize conversation history and persistent memory
|
| 36 |
self.conversation_history = []
|
| 37 |
self.persistent_memory = {}
|
| 38 |
+
|
| 39 |
# System prompt with more detailed instructions
|
| 40 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin(india). You should think step-by-step."""
|
| 41 |
+
|
| 42 |
def store_information(self, key, value):
|
| 43 |
"""Store important information in persistent memory"""
|
| 44 |
self.persistent_memory[key] = value
|
|
|
|
| 50 |
|
| 51 |
def reset_conversation(self):
|
| 52 |
"""
|
| 53 |
+
Completely reset the conversation history, persistent memory,
|
| 54 |
and clear API-side memory
|
| 55 |
"""
|
| 56 |
# Clear local memory
|
| 57 |
self.conversation_history = []
|
| 58 |
self.persistent_memory.clear()
|
| 59 |
+
|
| 60 |
+
# Reinitialize the client (not strictly necessary for the API, but can help with local state)
|
| 61 |
try:
|
| 62 |
self.client = InferenceClient(
|
| 63 |
+
model="Qwen/QwQ-32B-Preview",
|
| 64 |
api_key=self.hf_token
|
| 65 |
)
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error resetting API client: {e}")
|
| 68 |
+
|
| 69 |
return None # To clear the chatbot interface
|
| 70 |
|
| 71 |
def caption_image(self, image):
|
| 72 |
"""
|
| 73 |
Caption an uploaded image using Hugging Face API
|
| 74 |
+
|
| 75 |
Args:
|
| 76 |
image (str): Base64 encoded image or file path
|
| 77 |
+
|
| 78 |
Returns:
|
| 79 |
str: Image caption or error message
|
| 80 |
"""
|
|
|
|
| 89 |
if image.startswith('data:image'):
|
| 90 |
image = image.split(',')[1]
|
| 91 |
data = base64.b64decode(image)
|
| 92 |
+
# If image is a file-like object (unlikely with Gradio, but good to have)
|
| 93 |
else:
|
| 94 |
data = image.read()
|
| 95 |
+
|
| 96 |
# Send request to Hugging Face API
|
| 97 |
response = requests.post(
|
| 98 |
+
self.image_api_url,
|
| 99 |
+
headers=self.image_api_headers,
|
| 100 |
data=data
|
| 101 |
)
|
| 102 |
+
|
| 103 |
# Check response
|
| 104 |
if response.status_code == 200:
|
| 105 |
caption = response.json()[0].get('generated_text', 'No caption generated')
|
| 106 |
return caption
|
| 107 |
else:
|
| 108 |
+
return f"Error captioning image: {response.status_code} - {response.text}"
|
| 109 |
+
|
| 110 |
except Exception as e:
|
| 111 |
return f"Error processing image: {str(e)}"
|
| 112 |
|
| 113 |
def get_response(self, user_input, image=None):
|
| 114 |
"""
|
| 115 |
Generate a response using chat completions with improved error handling
|
| 116 |
+
|
| 117 |
Args:
|
| 118 |
user_input (str): User's message
|
| 119 |
image (optional): Uploaded image
|
| 120 |
+
|
| 121 |
Returns:
|
| 122 |
Stream of chat completions or error message
|
| 123 |
"""
|
| 124 |
try:
|
| 125 |
# Prepare messages with conversation context and persistent memory
|
| 126 |
messages = []
|
| 127 |
+
|
| 128 |
# Add system prompt as first message
|
| 129 |
messages.append(ChatMessage(
|
| 130 |
+
role="system",
|
| 131 |
content=self.system_prompt
|
| 132 |
+
).to_dict())
|
| 133 |
+
|
| 134 |
# Add persistent memory context if available
|
| 135 |
if self.persistent_memory:
|
| 136 |
memory_context = "Remembered Information:\n" + "\n".join(
|
| 137 |
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
|
| 138 |
)
|
| 139 |
messages.append(ChatMessage(
|
| 140 |
+
role="system",
|
| 141 |
content=memory_context
|
| 142 |
+
).to_dict())
|
| 143 |
+
|
| 144 |
# Convert existing conversation history to ChatMessage objects and then to dictionaries
|
| 145 |
for msg in self.conversation_history:
|
| 146 |
messages.append(ChatMessage(
|
| 147 |
+
role=msg['role'],
|
| 148 |
content=msg['content']
|
| 149 |
+
).to_dict())
|
| 150 |
+
|
| 151 |
# Process image if uploaded
|
| 152 |
if image:
|
| 153 |
image_caption = self.caption_image(image)
|
| 154 |
user_input = f"Image description: {image_caption}\n\nUser's message: {user_input}"
|
| 155 |
+
|
| 156 |
# Add user input
|
| 157 |
messages.append(ChatMessage(
|
| 158 |
+
role="user",
|
| 159 |
content=user_input
|
| 160 |
+
).to_dict())
|
| 161 |
+
|
| 162 |
# Generate response with streaming
|
| 163 |
+
stream = self.client.chat_completion(
|
| 164 |
+
messages=messages,
|
| 165 |
model="Qwen/QwQ-32B-Preview",
|
| 166 |
+
temperature=0.7,
|
| 167 |
+
max_tokens=16384,
|
| 168 |
+
top_p=0.9,
|
|
|
|
| 169 |
stream=True
|
| 170 |
)
|
| 171 |
|
|
|
|
| 175 |
print(f"Detailed error in get_response: {e}")
|
| 176 |
return f"Error generating response: {str(e)}"
|
| 177 |
|
| 178 |
+
def messages_to_prompt(self, messages):
|
| 179 |
+
"""
|
| 180 |
+
Convert a list of ChatMessage dictionaries to a single prompt string.
|
| 181 |
+
|
| 182 |
+
This is a simple implementation and you might need to adjust it
|
| 183 |
+
based on the specific requirements of the model you are using.
|
| 184 |
+
"""
|
| 185 |
+
prompt = ""
|
| 186 |
+
for msg in messages:
|
| 187 |
+
if msg["role"] == "system":
|
| 188 |
+
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
|
| 189 |
+
elif msg["role"] == "user":
|
| 190 |
+
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
|
| 191 |
+
elif msg["role"] == "assistant":
|
| 192 |
+
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
|
| 193 |
+
prompt += "<|assistant|>\n" # Start of assistant's turn
|
| 194 |
+
return prompt
|
| 195 |
+
|
| 196 |
+
|
| 197 |
def create_interface(self):
|
| 198 |
def streaming_response(message, chat_history, image_filepath):
|
| 199 |
# Check if an image was actually uploaded
|
|
|
|
| 219 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 220 |
chunk_content = chunk.choices[0].delta.content
|
| 221 |
full_response += chunk_content
|
| 222 |
+
|
| 223 |
# Update the last message in chat history with partial response
|
| 224 |
updated_history[-1][1] = full_response
|
| 225 |
yield "", updated_history, None
|
|
|
|
| 251 |
.chatbot-container .message {
|
| 252 |
font-family: 'Inter', sans-serif !important;
|
| 253 |
}
|
| 254 |
+
.gradio-container input,
|
| 255 |
+
.gradio-container textarea,
|
| 256 |
.gradio-container button {
|
| 257 |
font-family: 'Inter', sans-serif !important;
|
| 258 |
}
|