Spaces:
Running
Running
File size: 17,289 Bytes
24342ea c89cc59 a184be7 491769d 8699dd9 417372b 491769d e1ff28f d17badf a184be7 d95e3f7 bf2bb14 d95e3f7 db7d152 e319620 d95e3f7 db7d152 d95e3f7 db7d152 417372b c89cc59 db7d152 d95e3f7 a184be7 d95e3f7 db7d152 d95e3f7 82d001a db7d152 d95e3f7 e319620 a806d95 d95e3f7 e319620 24342ea 750ea35 db7d152 6ac5501 750ea35 6ac5501 750ea35 6ac5501 db7d152 6ac5501 db7d152 6ac5501 db7d152 6ac5501 750ea35 c89cc59 417372b c89cc59 417372b c89cc59 417372b db7d152 417372b db7d152 c89cc59 8699dd9 417372b e319620 417372b e319620 a184be7 e319620 db7d152 e319620 db7d152 e319620 db7d152 e319620 db7d152 e319620 db7d152 d17badf e319620 db7d152 e319620 db7d152 417372b db7d152 e319620 db7d152 417372b db7d152 94730d2 e319620 db7d152 e319620 db7d152 94730d2 db7d152 a184be7 4eb1be8 9f69ff9 4eb1be8 a184be7 e319620 a184be7 db7d152 a184be7 417372b 8699dd9 417372b d17badf a184be7 d17badf 417372b d17badf 3674c04 9f69ff9 a184be7 d17badf 9f69ff9 e319620 db7d152 e319620 417372b e319620 d17badf 417372b d17badf 3674c04 d95e3f7 3674c04 d17badf d95e3f7 417372b acff712 d95e3f7 db7d152 d95e3f7 caf6b1d bbdf35d 4eb1be8 d01e94b 4eb1be8 95cfa66 4eb1be8 3674c04 acff712 4eb1be8 bbdf35d c89cc59 acff712 bbdf35d c89cc59 417372b 3674c04 4eb1be8 c89cc59 bbdf35d c89cc59 3674c04 acff712 417372b acff712 417372b acff712 417372b acff712 3674c04 417372b acff712 417372b acff712 417372b acff712 3674c04 417372b acff712 417372b acff712 417372b acff712 dd67f43 24342ea 417372b d95e3f7 417372b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image, ImageGrab
import io
@dataclass
class ChatMessage:
"""Custom ChatMessage class since huggingface_hub doesn't provide one"""
role: str
content: str
def to_dict(self):
"""Converts ChatMessage to a dictionary for JSON serialization."""
return {"role": self.role, "content": self.content}
class XylariaChat:
def __init__(self):
# Securely load HuggingFace token
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize the inference client with the Qwen model
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview", # Using the specified model
api_key=self.hf_token
)
# Image captioning API setup with the new model
self.image_api_url = "https://api-inference.huggingface.co/models/microsoft/git-large-coco"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
# Initialize conversation history and persistent memory
self.conversation_history = []
self.persistent_memory = {}
# System prompt with more detailed instructions
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step. You should respond to image questions"""
def store_information(self, key, value):
"""Store important information in persistent memory"""
self.persistent_memory[key] = value
return f"Stored: {key} = {value}"
def retrieve_information(self, key):
"""Retrieve information from persistent memory"""
return self.persistent_memory.get(key, "No information found for this key.")
def reset_conversation(self):
"""
Completely reset the conversation history, persistent memory,
and clear API-side memory
"""
# Clear local memory
self.conversation_history = []
self.persistent_memory.clear()
# Reinitialize the client (not strictly necessary for the API, but can help with local state)
try:
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None # To clear the chatbot interface
def caption_image(self, image):
"""
Caption an uploaded image using Hugging Face API
Args:
image (str or list): Base64 encoded image(s), file path(s), or file-like object(s)
Returns:
str: Concatenated image captions or error message
"""
try:
# Ensure image is a list
if not isinstance(image, list):
image = [image]
captions = []
for img in image:
# If image is a file path, read and encode
if isinstance(img, str) and os.path.isfile(img):
with open(img, "rb") as f:
data = f.read()
# If image is already base64 encoded
elif isinstance(img, str):
# Remove data URI prefix if present
if img.startswith('data:image'):
img = img.split(',')[1]
data = base64.b64decode(img)
# If image is a file-like object
else:
data = img.read()
# Send request to Hugging Face API
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
# Check response
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
captions.append(caption)
else:
captions.append(f"Error captioning image: {response.status_code} - {response.text}")
# Return concatenated captions
return "\n".join(captions)
except Exception as e:
return f"Error processing image: {str(e)}"
def perform_math_ocr(self, image_path):
"""
Perform OCR on an image and return the extracted text.
Args:
image_path (str): Path to the image file.
Returns:
str: Extracted text from the image, or an error message.
"""
try:
# Open the image using Pillow library
img = Image.open(image_path)
# Use Tesseract to do OCR on the image
text = pytesseract.image_to_string(img)
# Remove leading/trailing whitespace and return
return text.strip()
except Exception as e:
return f"Error during Math OCR: {e}"
def get_response(self, user_input, images=None, math_ocr_image=None):
"""
Generate a response using chat completions with improved error handling
Args:
user_input (str): User's message
images (list, optional): List of uploaded images
math_ocr_image (str, optional): Path to math OCR image
Returns:
Stream of chat completions or error message
"""
try:
# Prepare messages with conversation context and persistent memory
messages = []
# Add system prompt as first message
messages.append(ChatMessage(
role="system",
content=self.system_prompt
).to_dict())
# Add persistent memory context if available
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.append(ChatMessage(
role="system",
content=memory_context
).to_dict())
# Convert existing conversation history to ChatMessage objects and then to dictionaries
for msg in self.conversation_history:
messages.append(ChatMessage(
role=msg['role'],
content=msg['content']
).to_dict())
# Process images if uploaded
image_context = ""
if images and any(images):
image_caption = self.caption_image(images)
image_context += f"Uploaded images: {image_caption}\n\n"
# Process math OCR image if uploaded
if math_ocr_image:
ocr_text = self.perform_math_ocr(math_ocr_image)
if not ocr_text.startswith("Error"):
image_context += f"Math OCR Result: {ocr_text}\n\n"
# Combine image context with user input
full_input = image_context + user_input
# Add user input
messages.append(ChatMessage(
role="user",
content=full_input
).to_dict())
# Calculate available tokens
input_tokens = sum(len(msg['content'].split()) for msg in messages)
max_new_tokens = 16384 - input_tokens - 50 # Reserve some tokens for safety
# Limit max_new_tokens to prevent exceeding the total limit
max_new_tokens = min(max_new_tokens, 10020)
# Generate response with streaming
stream = self.client.chat_completion(
messages=messages,
model="Qwen/QwQ-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
return stream
except Exception as e:
print(f"Detailed error in get_response: {e}")
return f"Error generating response: {str(e)}"
def messages_to_prompt(self, messages):
"""
Convert a list of ChatMessage dictionaries to a single prompt string.
This is a simple implementation and you might need to adjust it
based on the specific requirements of the model you are using.
"""
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "user":
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
prompt += "<|assistant|>\n" # Start of assistant's turn
return prompt
def create_interface(self):
def get_clipboard_image():
"""Capture image from clipboard"""
try:
img = ImageGrab.grabclipboard()
if img is not None:
# Save clipboard image to a temporary file
temp_path = "clipboard_image.png"
img.save(temp_path)
return temp_path
return None
except Exception as e:
print(f"Error getting clipboard image: {e}")
return None
def streaming_response(message, chat_history, image1, image2, image3, image4, image5, math_ocr_image_path):
# Collect non-None images
images = [img for img in [image1, image2, image3, image4, image5] if img is not None]
# Generate response
response_stream = self.get_response(message, images, math_ocr_image_path)
# Handle errors in get_response
if isinstance(response_stream, str):
# Return immediately with the error message
updated_history = chat_history + [[message, response_stream]]
yield ("", updated_history) + ((None,) * 6)
return
# Prepare for streaming response
full_response = ""
updated_history = chat_history + [[message, ""]]
# Streaming output
try:
for chunk in response_stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
# Update the last message in chat history with partial response
updated_history[-1][1] = full_response
yield ("", updated_history) + ((None,) * 6)
except Exception as e:
print(f"Streaming error: {e}")
# Display error in the chat interface
updated_history[-1][1] = f"Error during response: {e}"
yield ("", updated_history) + ((None,) * 6)
return
# Update conversation history
self.conversation_history.append(
{"role": "user", "content": message}
)
self.conversation_history.append(
{"role": "assistant", "content": full_response}
)
# Limit conversation history
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
# Reset image inputs after processing
yield ("", updated_history, None, None, None, None, None, None)
# Custom CSS for Inter font and improved styling
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
# Chat interface with improved styling
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.5 Senoa (EXPERIMENTAL)",
height=500,
show_copy_button=True,
)
# Input row with improved layout
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
# Image and Math upload buttons
with gr.Column(scale=1):
# Buttons for image and math uploads with symbolic icons
with gr.Row():
img_upload_btn = gr.Button("🖼️") # Image upload button
math_upload_btn = gr.Button("➗") # Math upload button
clipboard_btn = gr.Button("📋") # Clipboard paste button
# Multiple image inputs
with gr.Accordion("Images", open=False):
with gr.Column():
with gr.Row():
img1 = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Image 1",
height=200
)
img2 = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Image 2",
height=200
)
with gr.Row():
img3 = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Image 3",
height=200
)
img4 = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Image 4",
height=200
)
img5 = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Image 5",
height=200
)
# Math OCR Image Upload
with gr.Accordion("Math Input", open=False):
math_ocr_img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image for math",
height=200
)
# Clear history and memory buttons
with gr.Row():
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
# Submit functionality with streaming and image support
btn = gr.Button("Send")
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img1, img2, img3, img4, img5, math_ocr_img],
outputs=[txt, chatbot, img1, img2, img3, img4, img5, math_ocr_img]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img1, img2, img3, img4, img5, math_ocr_img],
outputs=[txt, chatbot, img1, img2, img3, img4, img5, math_ocr_img]
)
# Clipboard button functionality
clipboard_btn.click(
fn=get_clipboard_image,
outputs=[img1]
)
# Clear conversation button
clear.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot, txt, img1, img2, img3, img4, img5, math_ocr_img]
)
# Clear memory button
clear_memory.click(
fn=lambda: self.persistent_memory.clear(),
inputs=None,
outputs=[]
)
return demo
# Optional: If you want to run the interface
if __name__ == "__main__":
chat = XylariaChat()
interface = chat.create_interface()
interface.launch() |