Spaces:
Runtime error
Runtime error
File size: 19,270 Bytes
574b6ca 7963312 574b6ca 34c5bf3 7963312 757ebd9 e80aab9 3db6293 e80aab9 7963312 82a1534 7963312 34c5bf3 7963312 34c5bf3 7963312 6ea9560 7963312 fe65907 7963312 fe65907 7963312 c549c70 7963312 26e4907 7963312 4818f73 7963312 180de93 7963312 180de93 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 82a1534 7963312 757ebd9 7963312 51e7f46 7963312 6ea9560 7963312 8f6825e 7963312 3c4371f 7e4a06b 31243f4 8f6825e 7963312 31243f4 7963312 31243f4 7963312 757ebd9 36ed51a 7963312 3c4371f 7963312 eccf8e4 7963312 7d65c66 31243f4 7963312 7d65c66 7963312 e80aab9 7963312 7d65c66 7963312 a42d6f7 7963312 31243f4 8f6825e 7963312 31243f4 7963312 a42d6f7 31243f4 7963312 a42d6f7 7963312 a42d6f7 7963312 31243f4 7963312 a42d6f7 7963312 a42d6f7 31243f4 7963312 6ea9560 7963312 e80aab9 7963312 e80aab9 8f6825e 7963312 a42d6f7 7963312 8f6825e 7963312 a42d6f7 7963312 a42d6f7 e80aab9 7963312 8f6825e 31243f4 8f6825e e80aab9 7963312 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import re
import io
import base64
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
# SmolaAgent imports
from smolagents import CodeAgent, tool, DuckDuckGoSearchTool, PythonInterpreterTool
from smolagents.models import LiteLLMModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Tools for GAIA ---
@tool
def web_search_tool(query: str) -> str:
"""
Search the web for information using DuckDuckGo.
Args:
query: The search query string
Returns:
String containing search results
"""
try:
search_tool = DuckDuckGoSearchTool()
results = search_tool(query)
return str(results)
except Exception as e:
return f"Search failed: {str(e)}"
@tool
def calculator_tool(expression: str) -> str:
"""
Evaluate mathematical expressions safely.
Args:
expression: Mathematical expression as string
Returns:
Result of the calculation
"""
try:
# Safe evaluation - only allow basic math operations
allowed_chars = set('0123456789+-*/.() ')
if not all(c in allowed_chars for c in expression.replace(' ', '')):
return "Error: Expression contains invalid characters"
result = eval(expression)
return str(result)
except Exception as e:
return f"Calculation error: {str(e)}"
@tool
def image_analyzer_tool(image_path: str) -> str:
"""
Analyze images and extract information.
Args:
image_path: Path to the image file
Returns:
Description of image content
"""
try:
if not os.path.exists(image_path):
return "Error: Image file not found"
img = Image.open(image_path)
# Basic image analysis
width, height = img.size
mode = img.mode
format_info = img.format if img.format else "Unknown"
# Simple color analysis
if mode == 'RGB':
colors = img.getcolors(maxcolors=256*256*256)
if colors:
dominant_color = max(colors, key=lambda x: x[0])[1]
color_info = f"Dominant color: RGB{dominant_color}"
else:
color_info = "Complex color palette"
else:
color_info = f"Color mode: {mode}"
analysis = f"""Image Analysis:
- Dimensions: {width}x{height} pixels
- Format: {format_info}
- {color_info}
- File size: {os.path.getsize(image_path)} bytes
"""
return analysis
except Exception as e:
return f"Image analysis error: {str(e)}"
@tool
def file_reader_tool(file_path: str) -> str:
"""
Read and analyze various file types (text, CSV, JSON, etc.).
Args:
file_path: Path to the file
Returns:
File content or analysis
"""
try:
if not os.path.exists(file_path):
return "Error: File not found"
file_ext = Path(file_path).suffix.lower()
if file_ext == '.csv':
df = pd.read_csv(file_path)
return f"CSV file with {len(df)} rows and {len(df.columns)} columns.\nColumns: {list(df.columns)}\nFirst 5 rows:\n{df.head().to_string()}"
elif file_ext == '.json':
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return f"JSON file content:\n{json.dumps(data, indent=2)[:1000]}..."
elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css']:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return f"Text file content ({len(content)} characters):\n{content[:1000]}..."
else:
return f"Binary file: {file_ext}, size: {os.path.getsize(file_path)} bytes"
except Exception as e:
return f"File reading error: {str(e)}"
@tool
def data_processor_tool(data: str, operation: str) -> str:
"""
Process data with various operations (sort, filter, calculate statistics).
Args:
data: Data as string (JSON, CSV format, or numbers)
operation: Operation to perform (sort, sum, average, count, etc.)
Returns:
Processed data result
"""
try:
# Try to parse as JSON first
try:
parsed_data = json.loads(data)
except:
# Try to parse as numbers
try:
parsed_data = [float(x.strip()) for x in data.replace(',', ' ').split() if x.strip()]
except:
return "Error: Could not parse data"
if operation.lower() == 'sum' and isinstance(parsed_data, list):
return str(sum([x for x in parsed_data if isinstance(x, (int, float))]))
elif operation.lower() == 'average' and isinstance(parsed_data, list):
nums = [x for x in parsed_data if isinstance(x, (int, float))]
return str(sum(nums) / len(nums) if nums else 0)
elif operation.lower() == 'count':
return str(len(parsed_data))
elif operation.lower() == 'sort' and isinstance(parsed_data, list):
return str(sorted(parsed_data))
elif operation.lower() == 'max' and isinstance(parsed_data, list):
nums = [x for x in parsed_data if isinstance(x, (int, float))]
return str(max(nums) if nums else "No numbers found")
elif operation.lower() == 'min' and isinstance(parsed_data, list):
nums = [x for x in parsed_data if isinstance(x, (int, float))]
return str(min(nums) if nums else "No numbers found")
else:
return f"Unsupported operation: {operation}"
except Exception as e:
return f"Data processing error: {str(e)}"
# --- Enhanced GAIA Agent ---
class GAIAAgent:
def __init__(self):
print("GAIAAgent initialized with SmolaAgent framework.")
# Initialize model - using a lightweight model for resource efficiency
try:
# Use HuggingFace's free inference API or local model
self.model = LiteLLMModel(
model_id="microsoft/DialoGPT-medium", # Lightweight model
max_tokens=512,
temperature=0.1
)
except:
# Fallback to a basic model
print("Warning: Using fallback model configuration")
self.model = None
# Initialize tools
self.tools = [
web_search_tool,
calculator_tool,
image_analyzer_tool,
file_reader_tool,
data_processor_tool,
PythonInterpreterTool()
]
# Initialize the agent
try:
self.agent = CodeAgent(
tools=self.tools,
model=self.model,
max_iterations=5,
verbosity_level=1
)
except Exception as e:
print(f"Agent initialization error: {e}")
self.agent = None
def __call__(self, question: str) -> str:
print(f"GAIAAgent processing question: {question[:100]}...")
if not self.agent:
# Fallback logic if agent failed to initialize
return self._fallback_processing(question)
try:
# Enhanced prompt for GAIA tasks
enhanced_prompt = f"""
You are a helpful AI assistant designed to solve complex real-world problems that may require:
- Web searching for current information
- Mathematical calculations
- Image analysis
- File processing
- Multi-step reasoning
Question: {question}
Please approach this systematically:
1. Analyze what type of problem this is
2. Determine what tools/information you need
3. Use available tools to gather information
4. Reason through the problem step by step
5. Provide a clear, concise final answer
Remember to be precise and factual in your response.
"""
response = self.agent.run(enhanced_prompt)
# Extract the final answer if it's in the response
if isinstance(response, str):
# Look for common answer patterns
answer_patterns = [
r"Final answer:?\s*(.+)",
r"Answer:?\s*(.+)",
r"The answer is:?\s*(.+)",
r"Result:?\s*(.+)"
]
for pattern in answer_patterns:
match = re.search(pattern, response, re.IGNORECASE)
if match:
return match.group(1).strip()
# If no pattern found, return the last sentence or the whole response
sentences = response.split('.')
return sentences[-1].strip() if sentences else response
return str(response)
except Exception as e:
print(f"Error in agent processing: {e}")
return self._fallback_processing(question)
def _fallback_processing(self, question: str) -> str:
"""Fallback processing when main agent fails"""
try:
# Simple heuristic-based processing
question_lower = question.lower()
# Math questions
if any(op in question for op in ['+', '-', '*', '/', 'calculate', 'sum', 'average']):
# Extract numbers and try basic calculation
numbers = re.findall(r'-?\d+\.?\d*', question)
if len(numbers) >= 2:
try:
if 'sum' in question_lower or '+' in question:
result = sum(float(n) for n in numbers)
return str(result)
elif 'average' in question_lower:
result = sum(float(n) for n in numbers) / len(numbers)
return str(result)
except:
pass
# Search-based questions
if any(word in question_lower for word in ['what', 'who', 'when', 'where', 'how', 'why']):
try:
search_result = web_search_tool(question)
# Extract key information from search results
lines = search_result.split('\n')
relevant_lines = [line for line in lines if len(line.strip()) > 20]
return relevant_lines[0] if relevant_lines else "Unable to find specific information"
except:
pass
# Default response
return "I need more context or tools to answer this question accurately."
except Exception as e:
return f"Processing error: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIAAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GAIAAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run GAIA Agent
results_log = []
answers_payload = []
print(f"Running GAIA agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer
})
print(f"Answer for {task_id}: {submitted_answer[:50]}...")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_answer
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"GAIA Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Enhanced GAIA Agent with SmolaAgent Framework**
This agent is equipped with:
- ๐ Web search capabilities (DuckDuckGo)
- ๐งฎ Mathematical calculator
- ๐ผ๏ธ Image analysis
- ๐ File processing (CSV, JSON, text files)
- ๐ Data processing and statistics
- ๐ Python code execution
**Instructions:**
1. Log in to your Hugging Face account using the button below
2. Click 'Run GAIA Evaluation & Submit All Answers' to start the evaluation
3. The agent will process each question systematically using available tools
**Note:** Processing may take time as the agent analyzes each question thoroughly.
"""
)
gr.LoginButton()
run_button = gr.Button("Run GAIA Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"โ
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"โ
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("โน๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" GAIA Agent Starting ")) + "\n")
print("Launching Gradio Interface for GAIA Agent Evaluation...")
demo.launch(debug=True, share=False) |