arunasrivastava's picture
it worked! mostly
a2c34b1
raw
history blame
6.8 kB
import gradio as gr
import pandas as pd
import json
from pathlib import Path
from datetime import datetime, timezone
LAST_UPDATED = "Dec 4th 2024"
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
APP_DIR = Path("./")
# Modified column names for phonemic transcription metrics
column_names = {
"MODEL": "Model",
"SUBMISSION_NAME": "Submission Name",
"AVG_PER": "Average PER ⬇️",
"AVG_PFER": "Average PFER ⬇️",
"SUBSET": "Dataset Subset",
"GITHUB_URL": "GitHub",
"DATE": "Submission Date"
}
def load_leaderboard_data():
leaderboard_path = QUEUE_DIR / "leaderboard.json"
if not leaderboard_path.exists():
print(f"Warning: Leaderboard file not found at {leaderboard_path}")
return pd.DataFrame()
try:
with open(leaderboard_path, 'r') as f:
data = json.load(f)
df = pd.DataFrame(data)
return df
except Exception as e:
print(f"Error loading leaderboard data: {e}")
return pd.DataFrame()
def format_leaderboard_df(df):
if df.empty:
return df
# Rename columns to display names
display_df = df.rename(columns={
"model": "MODEL",
"submission_name": "SUBMISSION_NAME",
"average_per": "AVG_PER",
"average_pfer": "AVG_PFER",
"subset": "SUBSET",
"github_url": "GITHUB_URL",
"submission_date": "DATE"
})
# Format numeric columns
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
display_df["AVG_PFER"] = display_df["AVG_PFER"].apply(lambda x: f"{x:.4f}")
# Make GitHub URLs clickable
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"
)
# Sort by PER (ascending)
display_df.sort_values(by="AVG_PER", inplace=True)
return display_df
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=5):
if not model_name or not submission_name:
return gr.Markdown("⚠️ Please provide both model name and submission name.")
request_data = {
"transcription_model": model_name,
"subset": subset,
"max_samples": max_samples,
"submission_name": submission_name,
"github_url": github_url or ""
}
try:
# Ensure queue directory exists
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
# Generate unique timestamp for request file
timestamp = datetime.now(timezone.utc).isoformat().replace(":", "-")
request_file = QUEUE_DIR / f"request_{timestamp}.json"
with open(request_file, 'w') as f:
json.dump(request_data, f, indent=2)
return gr.Markdown("βœ… Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
except Exception as e:
return gr.Markdown(f"❌ Error submitting request: {str(e)}")
def load_results_for_model(model_name):
results_path = QUEUE_DIR / "results.json"
try:
with open(results_path, 'r') as f:
results = json.load(f)
# Filter results for the specific model
model_results = [r for r in results if r["model"] == model_name]
if not model_results:
return None
# Get the most recent result
latest_result = max(model_results, key=lambda x: x["timestamp"])
return latest_result
except Exception as e:
print(f"Error loading results: {e}")
return None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# 🎯 Phonemic Transcription Model Evaluation Leaderboard")
gr.Markdown("""
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks.
**Metrics:**
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
- **PFER (Phoneme Frame Error Rate)**: Measures frame-level phoneme prediction accuracy (lower is better)
""")
with gr.Tabs() as tabs:
with gr.TabItem("πŸ† Leaderboard"):
leaderboard_df = load_leaderboard_data()
formatted_df = format_leaderboard_df(leaderboard_df)
leaderboard_table = gr.DataFrame(
value=formatted_df,
interactive=False,
headers=list(column_names.values())
)
refresh_btn = gr.Button("πŸ”„ Refresh Leaderboard")
refresh_btn.click(
lambda: gr.DataFrame(value=format_leaderboard_df(load_leaderboard_data()))
)
with gr.TabItem("πŸ“ Submit Model"):
with gr.Column():
model_input = gr.Textbox(
label="Model Name",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft",
info="Enter the Hugging Face model ID"
)
submission_name = gr.Textbox(
label="Submission Name",
placeholder="My Awesome Model v1.0",
info="Give your submission a descriptive name"
)
github_url = gr.Textbox(
label="GitHub Repository URL (optional)",
placeholder="https://github.com/username/repo",
info="Link to your model's code repository"
)
submit_btn = gr.Button("πŸš€ Submit for Evaluation")
result_text = gr.Markdown()
submit_btn.click(
request_evaluation,
inputs=[model_input, submission_name, github_url],
outputs=result_text
)
with gr.TabItem("ℹ️ Detailed Results"):
model_selector = gr.Textbox(
label="Enter Model Name to View Details",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft"
)
view_btn = gr.Button("View Results")
results_json = gr.JSON(label="Detailed Results")
def show_model_results(model_name):
results = load_results_for_model(model_name)
return results or {"error": "No results found for this model"}
view_btn.click(
show_model_results,
inputs=[model_selector],
outputs=[results_json]
)
gr.Markdown(f"Last updated: {LAST_UPDATED}")
demo.launch()