Spaces:
Running
Running
Commit
·
a2c34b1
1
Parent(s):
b957022
it worked! mostly
Browse files- app.py +161 -114
- utils_display.py +1 -1
app.py
CHANGED
@@ -1,140 +1,187 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
-
from
|
5 |
-
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
|
6 |
-
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
|
7 |
from datetime import datetime, timezone
|
8 |
|
9 |
-
LAST_UPDATED = "
|
|
|
|
|
10 |
|
|
|
11 |
column_names = {
|
12 |
"MODEL": "Model",
|
13 |
-
"
|
14 |
-
"
|
|
|
|
|
|
|
|
|
15 |
}
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
x = x
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
for col in original_df.columns:
|
34 |
-
if col == "model":
|
35 |
-
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
36 |
-
else:
|
37 |
-
original_df[col] = original_df[col].apply(formatter) # For numerical values
|
38 |
-
|
39 |
-
original_df.rename(columns=column_names, inplace=True)
|
40 |
-
original_df.sort_values(by='Average WER ⬇️', inplace=True)
|
41 |
-
|
42 |
-
COLS = [c.name for c in fields(AutoEvalColumn)]
|
43 |
-
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
44 |
-
|
45 |
-
|
46 |
-
def request_model(model_text, chbcoco2017):
|
47 |
|
48 |
-
|
49 |
-
dataset_selection = []
|
50 |
-
if chbcoco2017:
|
51 |
-
dataset_selection.append("ESB Datasets tests only")
|
52 |
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
63 |
-
required_datasets = ', '.join(dataset_selection)
|
64 |
-
eval_entry = {
|
65 |
-
"date": current_time,
|
66 |
-
"model": model_text,
|
67 |
-
"datasets_selected": required_datasets
|
68 |
}
|
69 |
|
70 |
-
# Prepare file path
|
71 |
-
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
|
72 |
-
|
73 |
-
fn_datasets = '@ '.join(dataset_selection)
|
74 |
-
filename = model_text.replace("/","@") + "@@" + fn_datasets
|
75 |
-
if filename in requested_models:
|
76 |
-
return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# Write the results to a text file
|
82 |
-
with open(out_filepath, "w") as f:
|
83 |
-
f.write(json.dumps(eval_entry))
|
84 |
-
|
85 |
-
upload_file(filename, out_filepath)
|
86 |
|
87 |
-
#
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
# Remove the local file
|
91 |
-
out_filepath.unlink()
|
92 |
-
|
93 |
-
return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>")
|
94 |
except Exception as e:
|
95 |
-
return
|
96 |
-
|
97 |
-
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
|
98 |
-
gr.HTML(BANNER, elem_id="banner")
|
99 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
interactive=False,
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
with gr.Column():
|
118 |
-
gr.
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
demo.launch(
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
+
from pathlib import Path
|
|
|
|
|
6 |
from datetime import datetime, timezone
|
7 |
|
8 |
+
LAST_UPDATED = "Dec 4th 2024"
|
9 |
+
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
|
10 |
+
APP_DIR = Path("./")
|
11 |
|
12 |
+
# Modified column names for phonemic transcription metrics
|
13 |
column_names = {
|
14 |
"MODEL": "Model",
|
15 |
+
"SUBMISSION_NAME": "Submission Name",
|
16 |
+
"AVG_PER": "Average PER ⬇️",
|
17 |
+
"AVG_PFER": "Average PFER ⬇️",
|
18 |
+
"SUBSET": "Dataset Subset",
|
19 |
+
"GITHUB_URL": "GitHub",
|
20 |
+
"DATE": "Submission Date"
|
21 |
}
|
22 |
|
23 |
+
def load_leaderboard_data():
|
24 |
+
leaderboard_path = QUEUE_DIR / "leaderboard.json"
|
25 |
+
if not leaderboard_path.exists():
|
26 |
+
print(f"Warning: Leaderboard file not found at {leaderboard_path}")
|
27 |
+
return pd.DataFrame()
|
28 |
+
|
29 |
+
try:
|
30 |
+
with open(leaderboard_path, 'r') as f:
|
31 |
+
data = json.load(f)
|
32 |
+
df = pd.DataFrame(data)
|
33 |
+
return df
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error loading leaderboard data: {e}")
|
36 |
+
return pd.DataFrame()
|
37 |
|
38 |
+
def format_leaderboard_df(df):
|
39 |
+
if df.empty:
|
40 |
+
return df
|
41 |
+
|
42 |
+
# Rename columns to display names
|
43 |
+
display_df = df.rename(columns={
|
44 |
+
"model": "MODEL",
|
45 |
+
"submission_name": "SUBMISSION_NAME",
|
46 |
+
"average_per": "AVG_PER",
|
47 |
+
"average_pfer": "AVG_PFER",
|
48 |
+
"subset": "SUBSET",
|
49 |
+
"github_url": "GITHUB_URL",
|
50 |
+
"submission_date": "DATE"
|
51 |
+
})
|
52 |
|
53 |
+
# Format numeric columns
|
54 |
+
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
|
55 |
+
display_df["AVG_PFER"] = display_df["AVG_PFER"].apply(lambda x: f"{x:.4f}")
|
56 |
+
|
57 |
+
# Make GitHub URLs clickable
|
58 |
+
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
|
59 |
+
lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"
|
60 |
+
)
|
61 |
+
|
62 |
+
# Sort by PER (ascending)
|
63 |
+
display_df.sort_values(by="AVG_PER", inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
return display_df
|
|
|
|
|
|
|
66 |
|
67 |
+
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=5):
|
68 |
+
if not model_name or not submission_name:
|
69 |
+
return gr.Markdown("⚠️ Please provide both model name and submission name.")
|
70 |
|
71 |
+
request_data = {
|
72 |
+
"transcription_model": model_name,
|
73 |
+
"subset": subset,
|
74 |
+
"max_samples": max_samples,
|
75 |
+
"submission_name": submission_name,
|
76 |
+
"github_url": github_url or ""
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
}
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
+
# Ensure queue directory exists
|
81 |
+
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Generate unique timestamp for request file
|
84 |
+
timestamp = datetime.now(timezone.utc).isoformat().replace(":", "-")
|
85 |
+
request_file = QUEUE_DIR / f"request_{timestamp}.json"
|
86 |
+
|
87 |
+
with open(request_file, 'w') as f:
|
88 |
+
json.dump(request_data, f, indent=2)
|
89 |
+
|
90 |
+
return gr.Markdown("✅ Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
|
91 |
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
+
return gr.Markdown(f"❌ Error submitting request: {str(e)}")
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
def load_results_for_model(model_name):
|
96 |
+
results_path = QUEUE_DIR / "results.json"
|
97 |
+
try:
|
98 |
+
with open(results_path, 'r') as f:
|
99 |
+
results = json.load(f)
|
100 |
+
|
101 |
+
# Filter results for the specific model
|
102 |
+
model_results = [r for r in results if r["model"] == model_name]
|
103 |
+
if not model_results:
|
104 |
+
return None
|
105 |
+
|
106 |
+
# Get the most recent result
|
107 |
+
latest_result = max(model_results, key=lambda x: x["timestamp"])
|
108 |
+
return latest_result
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error loading results: {e}")
|
111 |
+
return None
|
112 |
+
|
113 |
+
# Create Gradio interface
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
gr.Markdown("# 🎯 Phonemic Transcription Model Evaluation Leaderboard")
|
116 |
+
gr.Markdown("""
|
117 |
+
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks.
|
118 |
+
|
119 |
+
**Metrics:**
|
120 |
+
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
|
121 |
+
- **PFER (Phoneme Frame Error Rate)**: Measures frame-level phoneme prediction accuracy (lower is better)
|
122 |
+
""")
|
123 |
+
|
124 |
+
with gr.Tabs() as tabs:
|
125 |
+
with gr.TabItem("🏆 Leaderboard"):
|
126 |
+
leaderboard_df = load_leaderboard_data()
|
127 |
+
formatted_df = format_leaderboard_df(leaderboard_df)
|
128 |
+
|
129 |
+
leaderboard_table = gr.DataFrame(
|
130 |
+
value=formatted_df,
|
131 |
interactive=False,
|
132 |
+
headers=list(column_names.values())
|
133 |
+
)
|
134 |
+
|
135 |
+
refresh_btn = gr.Button("🔄 Refresh Leaderboard")
|
136 |
+
refresh_btn.click(
|
137 |
+
lambda: gr.DataFrame(value=format_leaderboard_df(load_leaderboard_data()))
|
138 |
+
)
|
139 |
+
|
140 |
+
with gr.TabItem("📝 Submit Model"):
|
141 |
with gr.Column():
|
142 |
+
model_input = gr.Textbox(
|
143 |
+
label="Model Name",
|
144 |
+
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft",
|
145 |
+
info="Enter the Hugging Face model ID"
|
146 |
+
)
|
147 |
+
submission_name = gr.Textbox(
|
148 |
+
label="Submission Name",
|
149 |
+
placeholder="My Awesome Model v1.0",
|
150 |
+
info="Give your submission a descriptive name"
|
151 |
+
)
|
152 |
+
github_url = gr.Textbox(
|
153 |
+
label="GitHub Repository URL (optional)",
|
154 |
+
placeholder="https://github.com/username/repo",
|
155 |
+
info="Link to your model's code repository"
|
156 |
+
)
|
157 |
+
|
158 |
+
submit_btn = gr.Button("🚀 Submit for Evaluation")
|
159 |
+
result_text = gr.Markdown()
|
160 |
+
|
161 |
+
submit_btn.click(
|
162 |
+
request_evaluation,
|
163 |
+
inputs=[model_input, submission_name, github_url],
|
164 |
+
outputs=result_text
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.TabItem("ℹ️ Detailed Results"):
|
168 |
+
model_selector = gr.Textbox(
|
169 |
+
label="Enter Model Name to View Details",
|
170 |
+
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft"
|
171 |
)
|
172 |
+
view_btn = gr.Button("View Results")
|
173 |
+
results_json = gr.JSON(label="Detailed Results")
|
174 |
+
|
175 |
+
def show_model_results(model_name):
|
176 |
+
results = load_results_for_model(model_name)
|
177 |
+
return results or {"error": "No results found for this model"}
|
178 |
+
|
179 |
+
view_btn.click(
|
180 |
+
show_model_results,
|
181 |
+
inputs=[model_selector],
|
182 |
+
outputs=[results_json]
|
183 |
+
)
|
184 |
+
|
185 |
+
gr.Markdown(f"Last updated: {LAST_UPDATED}")
|
186 |
|
187 |
+
demo.launch()
|
utils_display.py
CHANGED
@@ -13,7 +13,7 @@ def fields(raw_class):
|
|
13 |
@dataclass(frozen=True)
|
14 |
class AutoEvalColumn: # Auto evals column
|
15 |
model = ColumnContent("Model", "markdown")
|
16 |
-
|
17 |
avg_wped = ColumnContent("Average PWED ⬇️", "number")
|
18 |
|
19 |
|
|
|
13 |
@dataclass(frozen=True)
|
14 |
class AutoEvalColumn: # Auto evals column
|
15 |
model = ColumnContent("Model", "markdown")
|
16 |
+
avg_per = ColumnContent("Average PER ⬇️", "number")
|
17 |
avg_wped = ColumnContent("Average PWED ⬇️", "number")
|
18 |
|
19 |
|