Spaces:
Running
Running
File size: 6,800 Bytes
a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 2deac9d b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 2deac9d a2c34b1 b064a39 a2c34b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import pandas as pd
import json
from pathlib import Path
from datetime import datetime, timezone
LAST_UPDATED = "Dec 4th 2024"
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
APP_DIR = Path("./")
# Modified column names for phonemic transcription metrics
column_names = {
"MODEL": "Model",
"SUBMISSION_NAME": "Submission Name",
"AVG_PER": "Average PER โฌ๏ธ",
"AVG_PFER": "Average PFER โฌ๏ธ",
"SUBSET": "Dataset Subset",
"GITHUB_URL": "GitHub",
"DATE": "Submission Date"
}
def load_leaderboard_data():
leaderboard_path = QUEUE_DIR / "leaderboard.json"
if not leaderboard_path.exists():
print(f"Warning: Leaderboard file not found at {leaderboard_path}")
return pd.DataFrame()
try:
with open(leaderboard_path, 'r') as f:
data = json.load(f)
df = pd.DataFrame(data)
return df
except Exception as e:
print(f"Error loading leaderboard data: {e}")
return pd.DataFrame()
def format_leaderboard_df(df):
if df.empty:
return df
# Rename columns to display names
display_df = df.rename(columns={
"model": "MODEL",
"submission_name": "SUBMISSION_NAME",
"average_per": "AVG_PER",
"average_pfer": "AVG_PFER",
"subset": "SUBSET",
"github_url": "GITHUB_URL",
"submission_date": "DATE"
})
# Format numeric columns
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
display_df["AVG_PFER"] = display_df["AVG_PFER"].apply(lambda x: f"{x:.4f}")
# Make GitHub URLs clickable
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"
)
# Sort by PER (ascending)
display_df.sort_values(by="AVG_PER", inplace=True)
return display_df
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=5):
if not model_name or not submission_name:
return gr.Markdown("โ ๏ธ Please provide both model name and submission name.")
request_data = {
"transcription_model": model_name,
"subset": subset,
"max_samples": max_samples,
"submission_name": submission_name,
"github_url": github_url or ""
}
try:
# Ensure queue directory exists
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
# Generate unique timestamp for request file
timestamp = datetime.now(timezone.utc).isoformat().replace(":", "-")
request_file = QUEUE_DIR / f"request_{timestamp}.json"
with open(request_file, 'w') as f:
json.dump(request_data, f, indent=2)
return gr.Markdown("โ
Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
except Exception as e:
return gr.Markdown(f"โ Error submitting request: {str(e)}")
def load_results_for_model(model_name):
results_path = QUEUE_DIR / "results.json"
try:
with open(results_path, 'r') as f:
results = json.load(f)
# Filter results for the specific model
model_results = [r for r in results if r["model"] == model_name]
if not model_results:
return None
# Get the most recent result
latest_result = max(model_results, key=lambda x: x["timestamp"])
return latest_result
except Exception as e:
print(f"Error loading results: {e}")
return None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# ๐ฏ Phonemic Transcription Model Evaluation Leaderboard")
gr.Markdown("""
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks.
**Metrics:**
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
- **PFER (Phoneme Frame Error Rate)**: Measures frame-level phoneme prediction accuracy (lower is better)
""")
with gr.Tabs() as tabs:
with gr.TabItem("๐ Leaderboard"):
leaderboard_df = load_leaderboard_data()
formatted_df = format_leaderboard_df(leaderboard_df)
leaderboard_table = gr.DataFrame(
value=formatted_df,
interactive=False,
headers=list(column_names.values())
)
refresh_btn = gr.Button("๐ Refresh Leaderboard")
refresh_btn.click(
lambda: gr.DataFrame(value=format_leaderboard_df(load_leaderboard_data()))
)
with gr.TabItem("๐ Submit Model"):
with gr.Column():
model_input = gr.Textbox(
label="Model Name",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft",
info="Enter the Hugging Face model ID"
)
submission_name = gr.Textbox(
label="Submission Name",
placeholder="My Awesome Model v1.0",
info="Give your submission a descriptive name"
)
github_url = gr.Textbox(
label="GitHub Repository URL (optional)",
placeholder="https://github.com/username/repo",
info="Link to your model's code repository"
)
submit_btn = gr.Button("๐ Submit for Evaluation")
result_text = gr.Markdown()
submit_btn.click(
request_evaluation,
inputs=[model_input, submission_name, github_url],
outputs=result_text
)
with gr.TabItem("โน๏ธ Detailed Results"):
model_selector = gr.Textbox(
label="Enter Model Name to View Details",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft"
)
view_btn = gr.Button("View Results")
results_json = gr.JSON(label="Detailed Results")
def show_model_results(model_name):
results = load_results_for_model(model_name)
return results or {"error": "No results found for this model"}
view_btn.click(
show_model_results,
inputs=[model_selector],
outputs=[results_json]
)
gr.Markdown(f"Last updated: {LAST_UPDATED}")
demo.launch() |