Spaces:
Running
Running
File size: 9,807 Bytes
b064a39 a2c34b1 b064a39 b2730cf b064a39 a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b2730cf a2c34b1 2deac9d b064a39 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf b064a39 a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b064a39 a2c34b1 b2730cf a2c34b1 b064a39 a2c34b1 b064a39 b2730cf a2c34b1 b064a39 a2c34b1 b064a39 b2730cf a2c34b1 b064a39 a2c34b1 b064a39 a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b064a39 a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 b2730cf a2c34b1 2deac9d a2c34b1 b064a39 b2730cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import pandas as pd
import json
from pathlib import Path
from datetime import datetime, timezone
import uuid
LAST_UPDATED = "Dec 4th 2024"
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
APP_DIR = Path("./")
# Modified column names for phonemic transcription metrics
column_names = {
"MODEL": "Model",
"AVG_PER": "Average PER β¬οΈ",
"AVG_PWED": "Average PWED β¬οΈ",
"GITHUB_URL": "GitHub",
"DATE": "Submission Date"
}
def load_json_file(file_path: Path, default=None):
"""Safely load a JSON file or return default if file doesn't exist"""
if default is None:
default = []
if not file_path.exists():
return default
try:
with open(file_path, 'r') as f:
return json.load(f)
except json.JSONDecodeError:
return default
def save_json_file(file_path: Path, data):
"""Safely save data to a JSON file"""
file_path.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
def load_leaderboard_data():
"""Load and parse leaderboard data"""
leaderboard_path = QUEUE_DIR / "leaderboard.json"
data = load_json_file(leaderboard_path)
return pd.DataFrame(data) if data else pd.DataFrame()
def format_leaderboard_df(df):
"""Format leaderboard dataframe for display"""
if df.empty:
return df
# Select and rename only the columns we want to display
display_df = pd.DataFrame({
"MODEL": df["model"],
"AVG_PER": df["average_per"],
"AVG_PWED": df["average_pwed"],
"GITHUB_URL": df["github_url"],
"DATE": pd.to_datetime(df["submission_date"]).dt.strftime("%Y-%m-%d")
})
# Format numeric columns
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
display_df["AVG_PWED"] = display_df["AVG_PWED"].apply(lambda x: f"{x:.4f}")
# Make GitHub URLs clickable
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
lambda x: f'<a href="{x}" target="_blank">Repository</a>' if x else "N/A"
)
# Sort by PER (ascending)
display_df.sort_values(by="AVG_PER", inplace=True)
return display_df
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=None):
"""Submit new evaluation request"""
if not model_name or not submission_name:
return gr.Markdown("β οΈ Please provide both model name and submission name.")
try:
# Ensure queue directory exists
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
# Load existing tasks
tasks_file = QUEUE_DIR / "tasks.json"
tasks = load_json_file(tasks_file)
# Create new task
new_task = {
"id": str(uuid.uuid4()),
"transcription_model": model_name,
"subset": subset,
"max_samples": max_samples,
"submission_name": submission_name,
"github_url": github_url or "",
"status": "queued",
"submitted_at": datetime.now(timezone.utc).isoformat()
}
# Add new task to existing tasks
tasks.append(new_task)
# Save updated tasks
save_json_file(tasks_file, tasks)
return gr.Markdown("β
Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
except Exception as e:
return gr.Markdown(f"β Error submitting request: {str(e)}")
def load_results_for_model(model_name):
"""Load detailed results for a specific model"""
results_path = QUEUE_DIR / "results.json"
results = load_json_file(results_path)
# Filter results for the specific model
model_results = [r for r in results if r["model"] == model_name]
if not model_results:
return None
# Get the most recent result
latest_result = max(model_results, key=lambda x: x["timestamp"])
return latest_result
def create_html_table(df):
"""Create HTML table with dark theme styling"""
if df.empty:
return "<p>No data available</p>"
html = """
<style>
table {
width: 100%;
border-collapse: collapse;
color: white;
background-color: #1a1a1a;
}
th, td {
padding: 8px;
text-align: left;
border: 1px solid #333;
}
th {
background-color: #2a2a2a;
color: white;
}
tr:nth-child(even) {
background-color: #252525;
}
tr:hover {
background-color: #303030;
}
a {
color: #6ea8fe;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
</style>
<table>
<thead>
<tr>
"""
# Add headers
for header in column_names.values():
html += f"<th>{header}</th>"
html += "</tr></thead><tbody>"
# Add rows
for _, row in df.iterrows():
html += "<tr>"
for col in df.columns:
if col == "GITHUB_URL":
html += f"<td>{row[col]}</td>" # URL is already formatted as HTML
else:
html += f"<td>{row[col]}</td>"
html += "</tr>"
html += "</tbody></table>"
return html
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# π― Phonemic Transcription Model Evaluation Leaderboard")
gr.Markdown("""
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks for English.
**Metrics:**
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
- **PWED (Phoneme Weighted Edit Distance)**: Measures a weighted difference in phonemes using phonemic features (lower is better)
**Datasets:**
- **[TIMIT](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech)**: A phonemic transcription dataset for English speech recognition
To learn more about the evaluation metrics, check out our blog post [here](https://huggingface.co/spaces/evaluate-metric/wer).
""")
with gr.Tabs() as tabs:
with gr.TabItem("π Leaderboard"):
leaderboard_df = load_leaderboard_data()
formatted_df = format_leaderboard_df(leaderboard_df)
leaderboard_table = gr.HTML(
value=create_html_table(formatted_df)
)
refresh_btn = gr.Button("π Refresh Leaderboard")
refresh_btn.click(
lambda: gr.HTML(value=create_html_table(format_leaderboard_df(load_leaderboard_data())))
)
with gr.TabItem("π Submit Model"):
with gr.Column():
model_input = gr.Textbox(
label="Model Name",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft",
info="Enter the Hugging Face model ID"
)
submission_name = gr.Textbox(
label="Submission Name",
placeholder="My Awesome Model v1.0",
info="Give your submission a descriptive name"
)
github_url = gr.Textbox(
label="GitHub Repository URL (optional)",
placeholder="https://github.com/username/repo",
info="Link to your model's code repository"
)
submit_btn = gr.Button("π Submit for Evaluation")
result_text = gr.Markdown()
def submit_and_clear(model_name, submission_name, github_url):
result = request_evaluation(model_name, submission_name, github_url)
# If submission was successful, clear the form
if "β
" in result.value:
return {
model_input: "",
submission_name: "",
github_url: "",
result_text: result
}
# If there was an error, keep the form data and show error
return {
model_input: model_name,
submission_name: submission_name,
github_url: github_url,
result_text: result
}
submit_btn.click(
submit_and_clear,
inputs=[model_input, submission_name, github_url],
outputs=[model_input, submission_name, github_url, result_text]
)
with gr.TabItem("βΉοΈ Detailed Results"):
model_selector = gr.Textbox(
label="Enter Model Name to View Details",
placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft"
)
view_btn = gr.Button("View Results")
results_json = gr.JSON(label="Detailed Results")
def show_model_results(model_name):
results = load_results_for_model(model_name)
return results or {"error": "No results found for this model"}
view_btn.click(
show_model_results,
inputs=[model_selector],
outputs=[results_json]
)
gr.Markdown(f"Last updated: {LAST_UPDATED}")
if __name__ == "__main__":
demo.launch() |