Spaces:
Running
Running
Commit
·
b2730cf
1
Parent(s):
a2c34b1
json not working
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
from pathlib import Path
|
6 |
from datetime import datetime, timezone
|
|
|
7 |
|
8 |
LAST_UPDATED = "Dec 4th 2024"
|
9 |
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
|
@@ -12,47 +12,55 @@ APP_DIR = Path("./")
|
|
12 |
# Modified column names for phonemic transcription metrics
|
13 |
column_names = {
|
14 |
"MODEL": "Model",
|
15 |
-
"SUBMISSION_NAME": "Submission Name",
|
16 |
"AVG_PER": "Average PER ⬇️",
|
17 |
-
"
|
18 |
-
"SUBSET": "Dataset Subset",
|
19 |
"GITHUB_URL": "GitHub",
|
20 |
"DATE": "Submission Date"
|
21 |
}
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def load_leaderboard_data():
|
|
|
24 |
leaderboard_path = QUEUE_DIR / "leaderboard.json"
|
25 |
-
|
26 |
-
|
27 |
-
return pd.DataFrame()
|
28 |
-
|
29 |
-
try:
|
30 |
-
with open(leaderboard_path, 'r') as f:
|
31 |
-
data = json.load(f)
|
32 |
-
df = pd.DataFrame(data)
|
33 |
-
return df
|
34 |
-
except Exception as e:
|
35 |
-
print(f"Error loading leaderboard data: {e}")
|
36 |
-
return pd.DataFrame()
|
37 |
|
38 |
def format_leaderboard_df(df):
|
|
|
39 |
if df.empty:
|
40 |
return df
|
41 |
|
42 |
-
#
|
43 |
-
display_df =
|
44 |
-
"
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"github_url": "GITHUB_URL",
|
50 |
-
"submission_date": "DATE"
|
51 |
})
|
52 |
|
53 |
# Format numeric columns
|
54 |
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
|
55 |
-
display_df["
|
56 |
|
57 |
# Make GitHub URLs clickable
|
58 |
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
|
@@ -64,61 +72,130 @@ def format_leaderboard_df(df):
|
|
64 |
|
65 |
return display_df
|
66 |
|
67 |
-
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=
|
|
|
68 |
if not model_name or not submission_name:
|
69 |
return gr.Markdown("⚠️ Please provide both model name and submission name.")
|
70 |
-
|
71 |
-
request_data = {
|
72 |
-
"transcription_model": model_name,
|
73 |
-
"subset": subset,
|
74 |
-
"max_samples": max_samples,
|
75 |
-
"submission_name": submission_name,
|
76 |
-
"github_url": github_url or ""
|
77 |
-
}
|
78 |
|
79 |
try:
|
80 |
# Ensure queue directory exists
|
81 |
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
with open(request_file, 'w') as f:
|
88 |
-
json.dump(request_data, f, indent=2)
|
89 |
-
|
90 |
return gr.Markdown("✅ Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
|
91 |
|
92 |
except Exception as e:
|
93 |
return gr.Markdown(f"❌ Error submitting request: {str(e)}")
|
94 |
|
95 |
def load_results_for_model(model_name):
|
|
|
96 |
results_path = QUEUE_DIR / "results.json"
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
model_results = [r for r in results if r["model"] == model_name]
|
103 |
-
if not model_results:
|
104 |
-
return None
|
105 |
-
|
106 |
-
# Get the most recent result
|
107 |
-
latest_result = max(model_results, key=lambda x: x["timestamp"])
|
108 |
-
return latest_result
|
109 |
-
except Exception as e:
|
110 |
-
print(f"Error loading results: {e}")
|
111 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# Create Gradio interface
|
114 |
with gr.Blocks() as demo:
|
115 |
gr.Markdown("# 🎯 Phonemic Transcription Model Evaluation Leaderboard")
|
116 |
gr.Markdown("""
|
117 |
-
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks.
|
118 |
|
119 |
**Metrics:**
|
120 |
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
|
121 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
122 |
""")
|
123 |
|
124 |
with gr.Tabs() as tabs:
|
@@ -126,15 +203,13 @@ with gr.Blocks() as demo:
|
|
126 |
leaderboard_df = load_leaderboard_data()
|
127 |
formatted_df = format_leaderboard_df(leaderboard_df)
|
128 |
|
129 |
-
leaderboard_table = gr.
|
130 |
-
value=formatted_df
|
131 |
-
interactive=False,
|
132 |
-
headers=list(column_names.values())
|
133 |
)
|
134 |
|
135 |
refresh_btn = gr.Button("🔄 Refresh Leaderboard")
|
136 |
refresh_btn.click(
|
137 |
-
lambda: gr.
|
138 |
)
|
139 |
|
140 |
with gr.TabItem("📝 Submit Model"):
|
@@ -158,10 +233,28 @@ with gr.Blocks() as demo:
|
|
158 |
submit_btn = gr.Button("🚀 Submit for Evaluation")
|
159 |
result_text = gr.Markdown()
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
submit_btn.click(
|
162 |
-
|
163 |
inputs=[model_input, submission_name, github_url],
|
164 |
-
outputs=result_text
|
165 |
)
|
166 |
|
167 |
with gr.TabItem("ℹ️ Detailed Results"):
|
@@ -184,4 +277,5 @@ with gr.Blocks() as demo:
|
|
184 |
|
185 |
gr.Markdown(f"Last updated: {LAST_UPDATED}")
|
186 |
|
187 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
from pathlib import Path
|
5 |
from datetime import datetime, timezone
|
6 |
+
import uuid
|
7 |
|
8 |
LAST_UPDATED = "Dec 4th 2024"
|
9 |
QUEUE_DIR = Path("/Users/arunasrivastava/Koel/IPA-Leaderboard/IPA-Transcription-EN-queue/queue")
|
|
|
12 |
# Modified column names for phonemic transcription metrics
|
13 |
column_names = {
|
14 |
"MODEL": "Model",
|
|
|
15 |
"AVG_PER": "Average PER ⬇️",
|
16 |
+
"AVG_PWED": "Average PWED ⬇️",
|
|
|
17 |
"GITHUB_URL": "GitHub",
|
18 |
"DATE": "Submission Date"
|
19 |
}
|
20 |
|
21 |
+
def load_json_file(file_path: Path, default=None):
|
22 |
+
"""Safely load a JSON file or return default if file doesn't exist"""
|
23 |
+
if default is None:
|
24 |
+
default = []
|
25 |
+
|
26 |
+
if not file_path.exists():
|
27 |
+
return default
|
28 |
+
|
29 |
+
try:
|
30 |
+
with open(file_path, 'r') as f:
|
31 |
+
return json.load(f)
|
32 |
+
except json.JSONDecodeError:
|
33 |
+
return default
|
34 |
+
|
35 |
+
def save_json_file(file_path: Path, data):
|
36 |
+
"""Safely save data to a JSON file"""
|
37 |
+
file_path.parent.mkdir(parents=True, exist_ok=True)
|
38 |
+
with open(file_path, 'w') as f:
|
39 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
40 |
+
|
41 |
def load_leaderboard_data():
|
42 |
+
"""Load and parse leaderboard data"""
|
43 |
leaderboard_path = QUEUE_DIR / "leaderboard.json"
|
44 |
+
data = load_json_file(leaderboard_path)
|
45 |
+
return pd.DataFrame(data) if data else pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def format_leaderboard_df(df):
|
48 |
+
"""Format leaderboard dataframe for display"""
|
49 |
if df.empty:
|
50 |
return df
|
51 |
|
52 |
+
# Select and rename only the columns we want to display
|
53 |
+
display_df = pd.DataFrame({
|
54 |
+
"MODEL": df["model"],
|
55 |
+
"AVG_PER": df["average_per"],
|
56 |
+
"AVG_PWED": df["average_pwed"],
|
57 |
+
"GITHUB_URL": df["github_url"],
|
58 |
+
"DATE": pd.to_datetime(df["submission_date"]).dt.strftime("%Y-%m-%d")
|
|
|
|
|
59 |
})
|
60 |
|
61 |
# Format numeric columns
|
62 |
display_df["AVG_PER"] = display_df["AVG_PER"].apply(lambda x: f"{x:.4f}")
|
63 |
+
display_df["AVG_PWED"] = display_df["AVG_PWED"].apply(lambda x: f"{x:.4f}")
|
64 |
|
65 |
# Make GitHub URLs clickable
|
66 |
display_df["GITHUB_URL"] = display_df["GITHUB_URL"].apply(
|
|
|
72 |
|
73 |
return display_df
|
74 |
|
75 |
+
def request_evaluation(model_name, submission_name, github_url, subset="test", max_samples=None):
|
76 |
+
"""Submit new evaluation request"""
|
77 |
if not model_name or not submission_name:
|
78 |
return gr.Markdown("⚠️ Please provide both model name and submission name.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
try:
|
81 |
# Ensure queue directory exists
|
82 |
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
|
83 |
|
84 |
+
# Load existing tasks
|
85 |
+
tasks_file = QUEUE_DIR / "tasks.json"
|
86 |
+
tasks = load_json_file(tasks_file)
|
87 |
+
|
88 |
+
# Create new task
|
89 |
+
new_task = {
|
90 |
+
"id": str(uuid.uuid4()),
|
91 |
+
"transcription_model": model_name,
|
92 |
+
"subset": subset,
|
93 |
+
"max_samples": max_samples,
|
94 |
+
"submission_name": submission_name,
|
95 |
+
"github_url": github_url or "",
|
96 |
+
"status": "queued",
|
97 |
+
"submitted_at": datetime.now(timezone.utc).isoformat()
|
98 |
+
}
|
99 |
+
|
100 |
+
# Add new task to existing tasks
|
101 |
+
tasks.append(new_task)
|
102 |
+
|
103 |
+
# Save updated tasks
|
104 |
+
save_json_file(tasks_file, tasks)
|
105 |
|
|
|
|
|
|
|
106 |
return gr.Markdown("✅ Evaluation request submitted successfully! Your results will appear on the leaderboard once processing is complete.")
|
107 |
|
108 |
except Exception as e:
|
109 |
return gr.Markdown(f"❌ Error submitting request: {str(e)}")
|
110 |
|
111 |
def load_results_for_model(model_name):
|
112 |
+
"""Load detailed results for a specific model"""
|
113 |
results_path = QUEUE_DIR / "results.json"
|
114 |
+
results = load_json_file(results_path)
|
115 |
+
|
116 |
+
# Filter results for the specific model
|
117 |
+
model_results = [r for r in results if r["model"] == model_name]
|
118 |
+
if not model_results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
return None
|
120 |
+
|
121 |
+
# Get the most recent result
|
122 |
+
latest_result = max(model_results, key=lambda x: x["timestamp"])
|
123 |
+
return latest_result
|
124 |
+
|
125 |
+
def create_html_table(df):
|
126 |
+
"""Create HTML table with dark theme styling"""
|
127 |
+
if df.empty:
|
128 |
+
return "<p>No data available</p>"
|
129 |
+
|
130 |
+
html = """
|
131 |
+
<style>
|
132 |
+
table {
|
133 |
+
width: 100%;
|
134 |
+
border-collapse: collapse;
|
135 |
+
color: white;
|
136 |
+
background-color: #1a1a1a;
|
137 |
+
}
|
138 |
+
th, td {
|
139 |
+
padding: 8px;
|
140 |
+
text-align: left;
|
141 |
+
border: 1px solid #333;
|
142 |
+
}
|
143 |
+
th {
|
144 |
+
background-color: #2a2a2a;
|
145 |
+
color: white;
|
146 |
+
}
|
147 |
+
tr:nth-child(even) {
|
148 |
+
background-color: #252525;
|
149 |
+
}
|
150 |
+
tr:hover {
|
151 |
+
background-color: #303030;
|
152 |
+
}
|
153 |
+
a {
|
154 |
+
color: #6ea8fe;
|
155 |
+
text-decoration: none;
|
156 |
+
}
|
157 |
+
a:hover {
|
158 |
+
text-decoration: underline;
|
159 |
+
}
|
160 |
+
</style>
|
161 |
+
<table>
|
162 |
+
<thead>
|
163 |
+
<tr>
|
164 |
+
"""
|
165 |
+
|
166 |
+
# Add headers
|
167 |
+
for header in column_names.values():
|
168 |
+
html += f"<th>{header}</th>"
|
169 |
+
|
170 |
+
html += "</tr></thead><tbody>"
|
171 |
+
|
172 |
+
# Add rows
|
173 |
+
for _, row in df.iterrows():
|
174 |
+
html += "<tr>"
|
175 |
+
for col in df.columns:
|
176 |
+
if col == "GITHUB_URL":
|
177 |
+
html += f"<td>{row[col]}</td>" # URL is already formatted as HTML
|
178 |
+
else:
|
179 |
+
html += f"<td>{row[col]}</td>"
|
180 |
+
html += "</tr>"
|
181 |
+
|
182 |
+
html += "</tbody></table>"
|
183 |
+
return html
|
184 |
|
185 |
# Create Gradio interface
|
186 |
with gr.Blocks() as demo:
|
187 |
gr.Markdown("# 🎯 Phonemic Transcription Model Evaluation Leaderboard")
|
188 |
gr.Markdown("""
|
189 |
+
Compare the performance of different phonemic transcription models on speech-to-IPA transcription tasks for English.
|
190 |
|
191 |
**Metrics:**
|
192 |
- **PER (Phoneme Error Rate)**: Measures the edit distance between predicted and ground truth phonemes (lower is better)
|
193 |
+
- **PWED (Phoneme Weighted Edit Distance)**: Measures a weighted difference in phonemes using phonemic features (lower is better)
|
194 |
+
|
195 |
+
**Datasets:**
|
196 |
+
- **[TIMIT](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech)**: A phonemic transcription dataset for English speech recognition
|
197 |
+
|
198 |
+
To learn more about the evaluation metrics, check out our blog post [here](https://huggingface.co/spaces/evaluate-metric/wer).
|
199 |
""")
|
200 |
|
201 |
with gr.Tabs() as tabs:
|
|
|
203 |
leaderboard_df = load_leaderboard_data()
|
204 |
formatted_df = format_leaderboard_df(leaderboard_df)
|
205 |
|
206 |
+
leaderboard_table = gr.HTML(
|
207 |
+
value=create_html_table(formatted_df)
|
|
|
|
|
208 |
)
|
209 |
|
210 |
refresh_btn = gr.Button("🔄 Refresh Leaderboard")
|
211 |
refresh_btn.click(
|
212 |
+
lambda: gr.HTML(value=create_html_table(format_leaderboard_df(load_leaderboard_data())))
|
213 |
)
|
214 |
|
215 |
with gr.TabItem("📝 Submit Model"):
|
|
|
233 |
submit_btn = gr.Button("🚀 Submit for Evaluation")
|
234 |
result_text = gr.Markdown()
|
235 |
|
236 |
+
def submit_and_clear(model_name, submission_name, github_url):
|
237 |
+
result = request_evaluation(model_name, submission_name, github_url)
|
238 |
+
# If submission was successful, clear the form
|
239 |
+
if "✅" in result.value:
|
240 |
+
return {
|
241 |
+
model_input: "",
|
242 |
+
submission_name: "",
|
243 |
+
github_url: "",
|
244 |
+
result_text: result
|
245 |
+
}
|
246 |
+
# If there was an error, keep the form data and show error
|
247 |
+
return {
|
248 |
+
model_input: model_name,
|
249 |
+
submission_name: submission_name,
|
250 |
+
github_url: github_url,
|
251 |
+
result_text: result
|
252 |
+
}
|
253 |
+
|
254 |
submit_btn.click(
|
255 |
+
submit_and_clear,
|
256 |
inputs=[model_input, submission_name, github_url],
|
257 |
+
outputs=[model_input, submission_name, github_url, result_text]
|
258 |
)
|
259 |
|
260 |
with gr.TabItem("ℹ️ Detailed Results"):
|
|
|
277 |
|
278 |
gr.Markdown(f"Last updated: {LAST_UPDATED}")
|
279 |
|
280 |
+
if __name__ == "__main__":
|
281 |
+
demo.launch()
|