Keemoz0's picture
change class name from column to table column
34b6cd1
raw
history blame
1.78 kB
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
# Load the processor and model for table structure recognition
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
# Define the inference function
def predict(image):
# Preprocess the input image
inputs = processor(images=image, return_tensors="pt")
# Perform object detection using the model
with torch.no_grad():
outputs = model(**inputs)
# Extract bounding boxes and class labels
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
predicted_class_logits = outputs.logits[0].cpu().numpy() # Class logits for the first image
predicted_classes = predicted_class_logits.argmax(-1) # Get class predictions
class_names = model.config.id2label # Get the class name mapping
# Filter predictions to only include columns based on class name
column_boxes = []
for idx, class_id in enumerate(predicted_classes):
class_name = class_names[class_id]
if "table column" in class_name.lower(): # Check if the class name contains 'column'
column_boxes.append(predicted_boxes[idx])
# Return the bounding boxes for columns
return {"boxes": column_boxes, "classes": ["table column"] * len(column_boxes)}
# Set up the Gradio interface
interface = gr.Interface(
fn=predict, # The function that gets called when an image is uploaded
inputs=gr.Image(type="pil"), # Image input (as PIL image)
outputs="json", # Outputting a JSON with the boxes and classes
)
# Launch the Gradio app
interface.launch()