import gradio as gr from transformers import AutoImageProcessor, AutoModelForObjectDetection import torch # Load the processor and model for table structure recognition processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition") model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition") # Define the inference function def predict(image): # Preprocess the input image inputs = processor(images=image, return_tensors="pt") # Perform object detection using the model with torch.no_grad(): outputs = model(**inputs) # Extract bounding boxes and class labels predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image predicted_class_logits = outputs.logits[0].cpu().numpy() # Class logits for the first image predicted_classes = predicted_class_logits.argmax(-1) # Get class predictions class_names = model.config.id2label # Get the class name mapping # Filter predictions to only include columns based on class name column_boxes = [] for idx, class_id in enumerate(predicted_classes): class_name = class_names[class_id] if "table column" in class_name.lower(): # Check if the class name contains 'column' column_boxes.append(predicted_boxes[idx]) # Return the bounding boxes for columns return {"boxes": column_boxes, "classes": ["table column"] * len(column_boxes)} # Set up the Gradio interface interface = gr.Interface( fn=predict, # The function that gets called when an image is uploaded inputs=gr.Image(type="pil"), # Image input (as PIL image) outputs="json", # Outputting a JSON with the boxes and classes ) # Launch the Gradio app interface.launch()