change class name from column to table column
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import hf_hub_download
|
3 |
-
from PIL import Image
|
4 |
-
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
|
|
6 |
|
7 |
-
gr.load("models/microsoft/table-transformer-structure-recognition").launch()
|
8 |
# Load the processor and model for table structure recognition
|
9 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
10 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
@@ -20,11 +17,19 @@ def predict(image):
|
|
20 |
|
21 |
# Extract bounding boxes and class labels
|
22 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
23 |
-
|
|
|
24 |
class_names = model.config.id2label # Get the class name mapping
|
25 |
-
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Set up the Gradio interface
|
30 |
interface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
3 |
+
import torch
|
4 |
|
|
|
5 |
# Load the processor and model for table structure recognition
|
6 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
7 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
|
|
17 |
|
18 |
# Extract bounding boxes and class labels
|
19 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
20 |
+
predicted_class_logits = outputs.logits[0].cpu().numpy() # Class logits for the first image
|
21 |
+
predicted_classes = predicted_class_logits.argmax(-1) # Get class predictions
|
22 |
class_names = model.config.id2label # Get the class name mapping
|
23 |
+
|
24 |
+
# Filter predictions to only include columns based on class name
|
25 |
+
column_boxes = []
|
26 |
+
for idx, class_id in enumerate(predicted_classes):
|
27 |
+
class_name = class_names[class_id]
|
28 |
+
if "table column" in class_name.lower(): # Check if the class name contains 'column'
|
29 |
+
column_boxes.append(predicted_boxes[idx])
|
30 |
+
|
31 |
+
# Return the bounding boxes for columns
|
32 |
+
return {"boxes": column_boxes, "classes": ["table column"] * len(column_boxes)}
|
33 |
|
34 |
# Set up the Gradio interface
|
35 |
interface = gr.Interface(
|