|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image, ImageDraw |
|
import torch |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection |
|
|
|
|
|
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition") |
|
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition") |
|
|
|
|
|
def predict(image): |
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() |
|
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
width, height = image.size |
|
|
|
|
|
for box in predicted_boxes: |
|
|
|
x0, y0, x1, y1 = box |
|
draw.rectangle([x0 * width, y0 * height, x1 * width, y1 * height], outline="red", width=3) |
|
|
|
|
|
return image |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil"), |
|
) |
|
|
|
|
|
interface.launch() |
|
|
|
|