import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image, ImageDraw import torch from transformers import AutoImageProcessor, AutoModelForObjectDetection # Load the processor and model for table structure recognition processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition") model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition") # Define the inference function def predict(image): # Preprocess the input image inputs = processor(images=image, return_tensors="pt") # Perform object detection using the model with torch.no_grad(): outputs = model(**inputs) # Extract bounding boxes and class labels predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions # Create a drawing context for the image draw = ImageDraw.Draw(image) width, height = image.size # Loop over all detected boxes and draw them on the image for box in predicted_boxes: # Box coordinates are normalized, so multiply by image dimensions x0, y0, x1, y1 = box draw.rectangle([x0 * width, y0 * height, x1 * width, y1 * height], outline="red", width=3) # Return the image with bounding boxes drawn return image # Set up the Gradio interface interface = gr.Interface( fn=predict, # The function that gets called when an image is uploaded inputs=gr.Image(type="pil"), # Image input (as PIL image) outputs=gr.Image(type="pil"), # Outputting the image with boxes drawn ) # Launch the Gradio app interface.launch()