Keemoz0 commited on
Commit
25186f8
·
1 Parent(s): fa8646f

Output Return an image

Browse files
Files changed (1) hide show
  1. app.py +16 -5
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  from huggingface_hub import hf_hub_download
3
- from PIL import Image
4
  import torch
5
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
6
 
@@ -20,16 +20,27 @@ def predict(image):
20
  # Extract bounding boxes and class labels
21
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
22
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
23
-
24
- # Return the bounding boxes for display
25
- return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
 
 
 
 
 
 
 
 
 
 
26
 
27
  # Set up the Gradio interface
28
  interface = gr.Interface(
29
  fn=predict, # The function that gets called when an image is uploaded
30
  inputs=gr.Image(type="pil"), # Image input (as PIL image)
31
- outputs="json", # Outputting a JSON with the boxes and classes
32
  )
33
 
34
  # Launch the Gradio app
35
  interface.launch()
 
 
1
  import gradio as gr
2
  from huggingface_hub import hf_hub_download
3
+ from PIL import Image, ImageDraw
4
  import torch
5
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
6
 
 
20
  # Extract bounding boxes and class labels
21
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
22
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
23
+
24
+ # Create a drawing context for the image
25
+ draw = ImageDraw.Draw(image)
26
+ width, height = image.size
27
+
28
+ # Loop over all detected boxes and draw them on the image
29
+ for box in predicted_boxes:
30
+ # Box coordinates are normalized, so multiply by image dimensions
31
+ x0, y0, x1, y1 = box
32
+ draw.rectangle([x0 * width, y0 * height, x1 * width, y1 * height], outline="red", width=3)
33
+
34
+ # Return the image with bounding boxes drawn
35
+ return image
36
 
37
  # Set up the Gradio interface
38
  interface = gr.Interface(
39
  fn=predict, # The function that gets called when an image is uploaded
40
  inputs=gr.Image(type="pil"), # Image input (as PIL image)
41
+ outputs=gr.Image(type="pil"), # Outputting the image with boxes drawn
42
  )
43
 
44
  # Launch the Gradio app
45
  interface.launch()
46
+