RevertToOriginal
Browse files
app.py
CHANGED
@@ -2,81 +2,34 @@ import gradio as gr
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
-
import pytesseract
|
6 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
7 |
-
import os
|
8 |
|
9 |
-
os.system('chmod 777 /tmp')
|
10 |
-
os.system('apt-get update -y')
|
11 |
-
os.system('apt-get install tesseract-ocr -y')
|
12 |
-
os.system('pip install -q pytesseract')
|
13 |
# Load the processor and model for table structure recognition
|
14 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
15 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
16 |
|
17 |
-
#
|
18 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
model.to(device)
|
20 |
-
|
21 |
-
# Define the inference and OCR function
|
22 |
def predict(image):
|
23 |
# Preprocess the input image
|
24 |
-
inputs = processor(images=image, return_tensors="pt")
|
25 |
|
26 |
# Perform object detection using the model
|
27 |
with torch.no_grad():
|
28 |
outputs = model(**inputs)
|
29 |
|
30 |
-
# Extract bounding boxes and
|
31 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
32 |
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
image_width, image_height = image.size # Get original image dimensions
|
38 |
-
|
39 |
-
# Iterate over detected boxes and perform OCR on columns
|
40 |
-
for box in predicted_boxes:
|
41 |
-
# Unpack the normalized bounding box (x_min, y_min, x_max, y_max)
|
42 |
-
x_min, y_min, x_max, y_max = box
|
43 |
-
|
44 |
-
# Ensure the coordinates are valid (x_max > x_min, y_max > y_min)
|
45 |
-
if x_min >= x_max or y_min >= y_max:
|
46 |
-
continue
|
47 |
-
|
48 |
-
# Convert normalized coordinates to pixel values
|
49 |
-
left = max(int(x_min * image_width), 0)
|
50 |
-
top = max(int(y_min * image_height), 0)
|
51 |
-
right = min(int(x_max * image_width), image_width)
|
52 |
-
bottom = min(int(y_max * image_height), image_height)
|
53 |
-
|
54 |
-
# Double-check that the coordinates are valid after conversion
|
55 |
-
if right <= left or bottom <= top:
|
56 |
-
continue
|
57 |
-
|
58 |
-
# Crop the image to the bounding box area
|
59 |
-
cropped_image = image.crop((left, top, right, bottom))
|
60 |
-
|
61 |
-
# Perform OCR on the cropped image
|
62 |
-
ocr_text = pytesseract.image_to_string(cropped_image)
|
63 |
-
|
64 |
-
# Append OCR result for this box
|
65 |
-
ocr_results.append({
|
66 |
-
"box": [left, top, right, bottom],
|
67 |
-
"text": ocr_text
|
68 |
-
})
|
69 |
|
70 |
-
# Return OCR results
|
71 |
-
return {"ocr_results": ocr_results}
|
72 |
-
#relaunch
|
73 |
# Set up the Gradio interface
|
74 |
interface = gr.Interface(
|
75 |
fn=predict, # The function that gets called when an image is uploaded
|
76 |
inputs=gr.Image(type="pil"), # Image input (as PIL image)
|
77 |
-
outputs="json", # Outputting a JSON with the
|
78 |
)
|
79 |
|
80 |
# Launch the Gradio app
|
81 |
interface.launch()
|
82 |
-
#recheck gradio bugging
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Load the processor and model for table structure recognition
|
8 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
9 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
10 |
|
11 |
+
# Define the inference function
|
|
|
|
|
|
|
|
|
12 |
def predict(image):
|
13 |
# Preprocess the input image
|
14 |
+
inputs = processor(images=image, return_tensors="pt")
|
15 |
|
16 |
# Perform object detection using the model
|
17 |
with torch.no_grad():
|
18 |
outputs = model(**inputs)
|
19 |
|
20 |
+
# Extract bounding boxes and class labels
|
21 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
22 |
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
|
23 |
|
24 |
+
# Return the bounding boxes for display
|
25 |
+
return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
# Set up the Gradio interface
|
28 |
interface = gr.Interface(
|
29 |
fn=predict, # The function that gets called when an image is uploaded
|
30 |
inputs=gr.Image(type="pil"), # Image input (as PIL image)
|
31 |
+
outputs="json", # Outputting a JSON with the boxes and classes
|
32 |
)
|
33 |
|
34 |
# Launch the Gradio app
|
35 |
interface.launch()
|
|