Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx import helper | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
def dropout(X, drop_probability=0.5, seed=0, training_mode=False, return_mask=False): # type: ignore | |
if drop_probability == 0 or training_mode is False: | |
if return_mask is True: | |
return X, np.ones(X.shape, dtype=bool) | |
else: | |
return X | |
np.random.seed(seed) | |
mask = np.random.uniform(0, 1.0, X.shape) >= drop_probability | |
scale = 1 / (1 - drop_probability) | |
if return_mask: | |
return mask * X * scale, mask.astype(bool) | |
return mask * X * scale | |
class Dropout(Base): | |
# Inferencing tests. | |
def export_default() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node("Dropout", inputs=["x"], outputs=["y"], seed=seed) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y = dropout(x) | |
expect(node, inputs=[x], outputs=[y], name="test_dropout_default") | |
def export_default_ratio() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r"], outputs=["y"], seed=seed | |
) | |
r = np.float32(0.1) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y = dropout(x, r) | |
expect(node, inputs=[x, r], outputs=[y], name="test_dropout_default_ratio") | |
def export_default_mask() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x"], outputs=["y", "z"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y, z = dropout(x, return_mask=True) | |
expect(node, inputs=[x], outputs=[y, z], name="test_dropout_default_mask") | |
def export_default_mask_ratio() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r"], outputs=["y", "z"], seed=seed | |
) | |
r = np.float32(0.1) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y, z = dropout(x, r, return_mask=True) | |
expect( | |
node, inputs=[x, r], outputs=[y, z], name="test_dropout_default_mask_ratio" | |
) | |
# Training tests. | |
def export_training_default() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.5) | |
t = np.bool_(True) | |
y = dropout(x, r, training_mode=t) | |
expect( | |
node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_default" | |
) | |
def export_training_default_ratio_mask() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.5) | |
t = np.bool_(True) | |
y, z = dropout(x, r, training_mode=t, return_mask=True) | |
expect( | |
node, | |
inputs=[x, r, t], | |
outputs=[y, z], | |
name="test_training_dropout_default_mask", | |
) | |
def export_training() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.75) | |
t = np.bool_(True) | |
y = dropout(x, r, training_mode=t) | |
expect(node, inputs=[x, r, t], outputs=[y], name="test_training_dropout") | |
def export_training_ratio_mask() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.75) | |
t = np.bool_(True) | |
y, z = dropout(x, r, training_mode=t, return_mask=True) | |
expect( | |
node, inputs=[x, r, t], outputs=[y, z], name="test_training_dropout_mask" | |
) | |
def export_training_default_zero_ratio() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.0) | |
t = np.bool_(True) | |
y = dropout(x, r, training_mode=t) | |
expect( | |
node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_zero_ratio" | |
) | |
def export_training_default_zero_ratio_mask() -> None: | |
seed = np.int64(0) | |
node = onnx.helper.make_node( | |
"Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
r = np.float32(0.0) | |
t = np.bool_(True) | |
y, z = dropout(x, r, training_mode=t, return_mask=True) | |
expect( | |
node, | |
inputs=[x, r, t], | |
outputs=[y, z], | |
name="test_training_dropout_zero_ratio_mask", | |
) | |
# Old dropout tests | |
def export_default_old() -> None: | |
node = onnx.helper.make_node( | |
"Dropout", | |
inputs=["x"], | |
outputs=["y"], | |
) | |
x = np.array([-1, 0, 1]).astype(np.float32) | |
y = x | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_dropout_default_old", | |
opset_imports=[helper.make_opsetid("", 11)], | |
) | |
def export_random_old() -> None: | |
node = onnx.helper.make_node( | |
"Dropout", | |
inputs=["x"], | |
outputs=["y"], | |
ratio=0.2, | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y = x | |
expect( | |
node, | |
inputs=[x], | |
outputs=[y], | |
name="test_dropout_random_old", | |
opset_imports=[helper.make_opsetid("", 11)], | |
) | |