File size: 6,549 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import numpy as np

import onnx
from onnx import helper
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect


def dropout(X, drop_probability=0.5, seed=0, training_mode=False, return_mask=False):  # type: ignore
    if drop_probability == 0 or training_mode is False:
        if return_mask is True:
            return X, np.ones(X.shape, dtype=bool)
        else:
            return X

    np.random.seed(seed)
    mask = np.random.uniform(0, 1.0, X.shape) >= drop_probability
    scale = 1 / (1 - drop_probability)
    if return_mask:
        return mask * X * scale, mask.astype(bool)
    return mask * X * scale


class Dropout(Base):
    # Inferencing tests.
    @staticmethod
    def export_default() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node("Dropout", inputs=["x"], outputs=["y"], seed=seed)

        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = dropout(x)
        expect(node, inputs=[x], outputs=[y], name="test_dropout_default")

    @staticmethod
    def export_default_ratio() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r"], outputs=["y"], seed=seed
        )

        r = np.float32(0.1)
        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = dropout(x, r)
        expect(node, inputs=[x, r], outputs=[y], name="test_dropout_default_ratio")

    @staticmethod
    def export_default_mask() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x"], outputs=["y", "z"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        y, z = dropout(x, return_mask=True)
        expect(node, inputs=[x], outputs=[y, z], name="test_dropout_default_mask")

    @staticmethod
    def export_default_mask_ratio() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r"], outputs=["y", "z"], seed=seed
        )

        r = np.float32(0.1)
        x = np.random.randn(3, 4, 5).astype(np.float32)
        y, z = dropout(x, r, return_mask=True)
        expect(
            node, inputs=[x, r], outputs=[y, z], name="test_dropout_default_mask_ratio"
        )

    # Training tests.

    @staticmethod
    def export_training_default() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.5)
        t = np.bool_(True)
        y = dropout(x, r, training_mode=t)
        expect(
            node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_default"
        )

    @staticmethod
    def export_training_default_ratio_mask() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.5)
        t = np.bool_(True)
        y, z = dropout(x, r, training_mode=t, return_mask=True)
        expect(
            node,
            inputs=[x, r, t],
            outputs=[y, z],
            name="test_training_dropout_default_mask",
        )

    @staticmethod
    def export_training() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.75)
        t = np.bool_(True)
        y = dropout(x, r, training_mode=t)
        expect(node, inputs=[x, r, t], outputs=[y], name="test_training_dropout")

    @staticmethod
    def export_training_ratio_mask() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.75)
        t = np.bool_(True)
        y, z = dropout(x, r, training_mode=t, return_mask=True)
        expect(
            node, inputs=[x, r, t], outputs=[y, z], name="test_training_dropout_mask"
        )

    @staticmethod
    def export_training_default_zero_ratio() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.0)
        t = np.bool_(True)
        y = dropout(x, r, training_mode=t)
        expect(
            node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_zero_ratio"
        )

    @staticmethod
    def export_training_default_zero_ratio_mask() -> None:
        seed = np.int64(0)
        node = onnx.helper.make_node(
            "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        r = np.float32(0.0)
        t = np.bool_(True)
        y, z = dropout(x, r, training_mode=t, return_mask=True)
        expect(
            node,
            inputs=[x, r, t],
            outputs=[y, z],
            name="test_training_dropout_zero_ratio_mask",
        )

    # Old dropout tests

    @staticmethod
    def export_default_old() -> None:
        node = onnx.helper.make_node(
            "Dropout",
            inputs=["x"],
            outputs=["y"],
        )

        x = np.array([-1, 0, 1]).astype(np.float32)
        y = x
        expect(
            node,
            inputs=[x],
            outputs=[y],
            name="test_dropout_default_old",
            opset_imports=[helper.make_opsetid("", 11)],
        )

    @staticmethod
    def export_random_old() -> None:
        node = onnx.helper.make_node(
            "Dropout",
            inputs=["x"],
            outputs=["y"],
            ratio=0.2,
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = x
        expect(
            node,
            inputs=[x],
            outputs=[y],
            name="test_dropout_random_old",
            opset_imports=[helper.make_opsetid("", 11)],
        )