# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx import helper from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect def dropout(X, drop_probability=0.5, seed=0, training_mode=False, return_mask=False): # type: ignore if drop_probability == 0 or training_mode is False: if return_mask is True: return X, np.ones(X.shape, dtype=bool) else: return X np.random.seed(seed) mask = np.random.uniform(0, 1.0, X.shape) >= drop_probability scale = 1 / (1 - drop_probability) if return_mask: return mask * X * scale, mask.astype(bool) return mask * X * scale class Dropout(Base): # Inferencing tests. @staticmethod def export_default() -> None: seed = np.int64(0) node = onnx.helper.make_node("Dropout", inputs=["x"], outputs=["y"], seed=seed) x = np.random.randn(3, 4, 5).astype(np.float32) y = dropout(x) expect(node, inputs=[x], outputs=[y], name="test_dropout_default") @staticmethod def export_default_ratio() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r"], outputs=["y"], seed=seed ) r = np.float32(0.1) x = np.random.randn(3, 4, 5).astype(np.float32) y = dropout(x, r) expect(node, inputs=[x, r], outputs=[y], name="test_dropout_default_ratio") @staticmethod def export_default_mask() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x"], outputs=["y", "z"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) y, z = dropout(x, return_mask=True) expect(node, inputs=[x], outputs=[y, z], name="test_dropout_default_mask") @staticmethod def export_default_mask_ratio() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r"], outputs=["y", "z"], seed=seed ) r = np.float32(0.1) x = np.random.randn(3, 4, 5).astype(np.float32) y, z = dropout(x, r, return_mask=True) expect( node, inputs=[x, r], outputs=[y, z], name="test_dropout_default_mask_ratio" ) # Training tests. @staticmethod def export_training_default() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.5) t = np.bool_(True) y = dropout(x, r, training_mode=t) expect( node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_default" ) @staticmethod def export_training_default_ratio_mask() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.5) t = np.bool_(True) y, z = dropout(x, r, training_mode=t, return_mask=True) expect( node, inputs=[x, r, t], outputs=[y, z], name="test_training_dropout_default_mask", ) @staticmethod def export_training() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.75) t = np.bool_(True) y = dropout(x, r, training_mode=t) expect(node, inputs=[x, r, t], outputs=[y], name="test_training_dropout") @staticmethod def export_training_ratio_mask() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.75) t = np.bool_(True) y, z = dropout(x, r, training_mode=t, return_mask=True) expect( node, inputs=[x, r, t], outputs=[y, z], name="test_training_dropout_mask" ) @staticmethod def export_training_default_zero_ratio() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.0) t = np.bool_(True) y = dropout(x, r, training_mode=t) expect( node, inputs=[x, r, t], outputs=[y], name="test_training_dropout_zero_ratio" ) @staticmethod def export_training_default_zero_ratio_mask() -> None: seed = np.int64(0) node = onnx.helper.make_node( "Dropout", inputs=["x", "r", "t"], outputs=["y", "z"], seed=seed ) x = np.random.randn(3, 4, 5).astype(np.float32) r = np.float32(0.0) t = np.bool_(True) y, z = dropout(x, r, training_mode=t, return_mask=True) expect( node, inputs=[x, r, t], outputs=[y, z], name="test_training_dropout_zero_ratio_mask", ) # Old dropout tests @staticmethod def export_default_old() -> None: node = onnx.helper.make_node( "Dropout", inputs=["x"], outputs=["y"], ) x = np.array([-1, 0, 1]).astype(np.float32) y = x expect( node, inputs=[x], outputs=[y], name="test_dropout_default_old", opset_imports=[helper.make_opsetid("", 11)], ) @staticmethod def export_random_old() -> None: node = onnx.helper.make_node( "Dropout", inputs=["x"], outputs=["y"], ratio=0.2, ) x = np.random.randn(3, 4, 5).astype(np.float32) y = x expect( node, inputs=[x], outputs=[y], name="test_dropout_random_old", opset_imports=[helper.make_opsetid("", 11)], )