Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
class Div(Base): | |
def export() -> None: | |
node = onnx.helper.make_node( | |
"Div", | |
inputs=["x", "y"], | |
outputs=["z"], | |
) | |
x = np.array([3, 4]).astype(np.float32) | |
y = np.array([1, 2]).astype(np.float32) | |
z = x / y # expected output [3., 2.] | |
expect(node, inputs=[x, y], outputs=[z], name="test_div_example") | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0 | |
z = x / y | |
expect(node, inputs=[x, y], outputs=[z], name="test_div") | |
x = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8) | |
y = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8) + 1 | |
z = x // y | |
expect(node, inputs=[x, y], outputs=[z], name="test_div_uint8") | |
def export_div_broadcast() -> None: | |
node = onnx.helper.make_node( | |
"Div", | |
inputs=["x", "y"], | |
outputs=["z"], | |
) | |
x = np.random.randn(3, 4, 5).astype(np.float32) | |
y = np.random.rand(5).astype(np.float32) + 1.0 | |
z = x / y | |
expect(node, inputs=[x, y], outputs=[z], name="test_div_bcast") | |