Spaces:
Running
Running
File size: 1,475 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
class Div(Base):
@staticmethod
def export() -> None:
node = onnx.helper.make_node(
"Div",
inputs=["x", "y"],
outputs=["z"],
)
x = np.array([3, 4]).astype(np.float32)
y = np.array([1, 2]).astype(np.float32)
z = x / y # expected output [3., 2.]
expect(node, inputs=[x, y], outputs=[z], name="test_div_example")
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0
z = x / y
expect(node, inputs=[x, y], outputs=[z], name="test_div")
x = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8)
y = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8) + 1
z = x // y
expect(node, inputs=[x, y], outputs=[z], name="test_div_uint8")
@staticmethod
def export_div_broadcast() -> None:
node = onnx.helper.make_node(
"Div",
inputs=["x", "y"],
outputs=["z"],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.rand(5).astype(np.float32) + 1.0
z = x / y
expect(node, inputs=[x, y], outputs=[z], name="test_div_bcast")
|