# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect class Div(Base): @staticmethod def export() -> None: node = onnx.helper.make_node( "Div", inputs=["x", "y"], outputs=["z"], ) x = np.array([3, 4]).astype(np.float32) y = np.array([1, 2]).astype(np.float32) z = x / y # expected output [3., 2.] expect(node, inputs=[x, y], outputs=[z], name="test_div_example") x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0 z = x / y expect(node, inputs=[x, y], outputs=[z], name="test_div") x = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8) y = np.random.randint(24, size=(3, 4, 5), dtype=np.uint8) + 1 z = x // y expect(node, inputs=[x, y], outputs=[z], name="test_div_uint8") @staticmethod def export_div_broadcast() -> None: node = onnx.helper.make_node( "Div", inputs=["x", "y"], outputs=["z"], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(5).astype(np.float32) + 1.0 z = x / y expect(node, inputs=[x, y], outputs=[z], name="test_div_bcast")