Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
4.35 kB
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
class Clip(Base):
@staticmethod
def export() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min", "max"],
outputs=["y"],
)
x = np.array([-2, 0, 2]).astype(np.float32)
min_val = np.float32(-1)
max_val = np.float32(1)
y = np.clip(x, min_val, max_val) # expected output [-1., 0., 1.]
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_example"
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, max_val)
expect(node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip")
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min", "max"],
outputs=["y"],
)
min_val = np.float32(-5)
max_val = np.float32(5)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_inbounds"
)
x = np.array([-6, 0, 6]).astype(np.float32)
y = np.array([-5, 0, 5]).astype(np.float32)
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_outbounds"
)
x = np.array([-1, 0, 6]).astype(np.float32)
y = np.array([-1, 0, 5]).astype(np.float32)
expect(
node,
inputs=[x, min_val, max_val],
outputs=[y],
name="test_clip_splitbounds",
)
@staticmethod
def export_clip_default() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min"],
outputs=["y"],
)
min_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, np.inf)
expect(node, inputs=[x, min_val], outputs=[y], name="test_clip_default_min")
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, "max"],
outputs=["y"],
)
max_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -np.inf, max_val)
expect(node, inputs=[x, max_val], outputs=[y], name="test_clip_default_max")
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, no_max],
outputs=["y"],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_inbounds")
@staticmethod
def export_clip_default_int8() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min"],
outputs=["y"],
)
min_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, min_val, np.iinfo(np.int8).max)
expect(
node, inputs=[x, min_val], outputs=[y], name="test_clip_default_int8_min"
)
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, "max"],
outputs=["y"],
)
max_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, np.iinfo(np.int8).min, max_val)
expect(
node, inputs=[x, max_val], outputs=[y], name="test_clip_default_int8_max"
)
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, no_max],
outputs=["y"],
)
x = np.array([-1, 0, 1]).astype(np.int8)
y = np.array([-1, 0, 1]).astype(np.int8)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_int8_inbounds")