Spaces:
Running
Running
File size: 4,349 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
class Clip(Base):
@staticmethod
def export() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min", "max"],
outputs=["y"],
)
x = np.array([-2, 0, 2]).astype(np.float32)
min_val = np.float32(-1)
max_val = np.float32(1)
y = np.clip(x, min_val, max_val) # expected output [-1., 0., 1.]
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_example"
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, max_val)
expect(node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip")
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min", "max"],
outputs=["y"],
)
min_val = np.float32(-5)
max_val = np.float32(5)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_inbounds"
)
x = np.array([-6, 0, 6]).astype(np.float32)
y = np.array([-5, 0, 5]).astype(np.float32)
expect(
node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_outbounds"
)
x = np.array([-1, 0, 6]).astype(np.float32)
y = np.array([-1, 0, 5]).astype(np.float32)
expect(
node,
inputs=[x, min_val, max_val],
outputs=[y],
name="test_clip_splitbounds",
)
@staticmethod
def export_clip_default() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min"],
outputs=["y"],
)
min_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, min_val, np.inf)
expect(node, inputs=[x, min_val], outputs=[y], name="test_clip_default_min")
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, "max"],
outputs=["y"],
)
max_val = np.float32(0)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -np.inf, max_val)
expect(node, inputs=[x, max_val], outputs=[y], name="test_clip_default_max")
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, no_max],
outputs=["y"],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_inbounds")
@staticmethod
def export_clip_default_int8() -> None:
node = onnx.helper.make_node(
"Clip",
inputs=["x", "min"],
outputs=["y"],
)
min_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, min_val, np.iinfo(np.int8).max)
expect(
node, inputs=[x, min_val], outputs=[y], name="test_clip_default_int8_min"
)
no_min = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, "max"],
outputs=["y"],
)
max_val = np.int8(0)
x = np.random.randn(3, 4, 5).astype(np.int8)
y = np.clip(x, np.iinfo(np.int8).min, max_val)
expect(
node, inputs=[x, max_val], outputs=[y], name="test_clip_default_int8_max"
)
no_max = "" # optional input, not supplied
node = onnx.helper.make_node(
"Clip",
inputs=["x", no_min, no_max],
outputs=["y"],
)
x = np.array([-1, 0, 1]).astype(np.int8)
y = np.array([-1, 0, 1]).astype(np.int8)
expect(node, inputs=[x], outputs=[y], name="test_clip_default_int8_inbounds")
|