File size: 4,349 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import numpy as np

import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect


class Clip(Base):
    @staticmethod
    def export() -> None:
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", "min", "max"],
            outputs=["y"],
        )

        x = np.array([-2, 0, 2]).astype(np.float32)
        min_val = np.float32(-1)
        max_val = np.float32(1)
        y = np.clip(x, min_val, max_val)  # expected output [-1., 0., 1.]
        expect(
            node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_example"
        )

        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = np.clip(x, min_val, max_val)
        expect(node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip")
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", "min", "max"],
            outputs=["y"],
        )

        min_val = np.float32(-5)
        max_val = np.float32(5)

        x = np.array([-1, 0, 1]).astype(np.float32)
        y = np.array([-1, 0, 1]).astype(np.float32)
        expect(
            node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_inbounds"
        )

        x = np.array([-6, 0, 6]).astype(np.float32)
        y = np.array([-5, 0, 5]).astype(np.float32)
        expect(
            node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_outbounds"
        )

        x = np.array([-1, 0, 6]).astype(np.float32)
        y = np.array([-1, 0, 5]).astype(np.float32)
        expect(
            node,
            inputs=[x, min_val, max_val],
            outputs=[y],
            name="test_clip_splitbounds",
        )

    @staticmethod
    def export_clip_default() -> None:
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", "min"],
            outputs=["y"],
        )
        min_val = np.float32(0)
        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = np.clip(x, min_val, np.inf)
        expect(node, inputs=[x, min_val], outputs=[y], name="test_clip_default_min")

        no_min = ""  # optional input, not supplied
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", no_min, "max"],
            outputs=["y"],
        )
        max_val = np.float32(0)
        x = np.random.randn(3, 4, 5).astype(np.float32)
        y = np.clip(x, -np.inf, max_val)
        expect(node, inputs=[x, max_val], outputs=[y], name="test_clip_default_max")

        no_max = ""  # optional input, not supplied
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", no_min, no_max],
            outputs=["y"],
        )

        x = np.array([-1, 0, 1]).astype(np.float32)
        y = np.array([-1, 0, 1]).astype(np.float32)
        expect(node, inputs=[x], outputs=[y], name="test_clip_default_inbounds")

    @staticmethod
    def export_clip_default_int8() -> None:
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", "min"],
            outputs=["y"],
        )
        min_val = np.int8(0)
        x = np.random.randn(3, 4, 5).astype(np.int8)
        y = np.clip(x, min_val, np.iinfo(np.int8).max)
        expect(
            node, inputs=[x, min_val], outputs=[y], name="test_clip_default_int8_min"
        )

        no_min = ""  # optional input, not supplied
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", no_min, "max"],
            outputs=["y"],
        )
        max_val = np.int8(0)
        x = np.random.randn(3, 4, 5).astype(np.int8)
        y = np.clip(x, np.iinfo(np.int8).min, max_val)
        expect(
            node, inputs=[x, max_val], outputs=[y], name="test_clip_default_int8_max"
        )

        no_max = ""  # optional input, not supplied
        node = onnx.helper.make_node(
            "Clip",
            inputs=["x", no_min, no_max],
            outputs=["y"],
        )

        x = np.array([-1, 0, 1]).astype(np.int8)
        y = np.array([-1, 0, 1]).astype(np.int8)
        expect(node, inputs=[x], outputs=[y], name="test_clip_default_int8_inbounds")