# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect class Clip(Base): @staticmethod def export() -> None: node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], ) x = np.array([-2, 0, 2]).astype(np.float32) min_val = np.float32(-1) max_val = np.float32(1) y = np.clip(x, min_val, max_val) # expected output [-1., 0., 1.] expect( node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_example" ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, min_val, max_val) expect(node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip") node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], ) min_val = np.float32(-5) max_val = np.float32(5) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-1, 0, 1]).astype(np.float32) expect( node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_inbounds" ) x = np.array([-6, 0, 6]).astype(np.float32) y = np.array([-5, 0, 5]).astype(np.float32) expect( node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_outbounds" ) x = np.array([-1, 0, 6]).astype(np.float32) y = np.array([-1, 0, 5]).astype(np.float32) expect( node, inputs=[x, min_val, max_val], outputs=[y], name="test_clip_splitbounds", ) @staticmethod def export_clip_default() -> None: node = onnx.helper.make_node( "Clip", inputs=["x", "min"], outputs=["y"], ) min_val = np.float32(0) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, min_val, np.inf) expect(node, inputs=[x, min_val], outputs=[y], name="test_clip_default_min") no_min = "" # optional input, not supplied node = onnx.helper.make_node( "Clip", inputs=["x", no_min, "max"], outputs=["y"], ) max_val = np.float32(0) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, -np.inf, max_val) expect(node, inputs=[x, max_val], outputs=[y], name="test_clip_default_max") no_max = "" # optional input, not supplied node = onnx.helper.make_node( "Clip", inputs=["x", no_min, no_max], outputs=["y"], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-1, 0, 1]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name="test_clip_default_inbounds") @staticmethod def export_clip_default_int8() -> None: node = onnx.helper.make_node( "Clip", inputs=["x", "min"], outputs=["y"], ) min_val = np.int8(0) x = np.random.randn(3, 4, 5).astype(np.int8) y = np.clip(x, min_val, np.iinfo(np.int8).max) expect( node, inputs=[x, min_val], outputs=[y], name="test_clip_default_int8_min" ) no_min = "" # optional input, not supplied node = onnx.helper.make_node( "Clip", inputs=["x", no_min, "max"], outputs=["y"], ) max_val = np.int8(0) x = np.random.randn(3, 4, 5).astype(np.int8) y = np.clip(x, np.iinfo(np.int8).min, max_val) expect( node, inputs=[x, max_val], outputs=[y], name="test_clip_default_int8_max" ) no_max = "" # optional input, not supplied node = onnx.helper.make_node( "Clip", inputs=["x", no_min, no_max], outputs=["y"], ) x = np.array([-1, 0, 1]).astype(np.int8) y = np.array([-1, 0, 1]).astype(np.int8) expect(node, inputs=[x], outputs=[y], name="test_clip_default_int8_inbounds")