Spaces:
Sleeping
Sleeping
File size: 6,526 Bytes
8174974 29a8952 8174974 efa60b3 66128ac efa60b3 8174974 b3f2d3d 8174974 49f0804 66128ac b3f2d3d efa60b3 8174974 b3f2d3d 8174974 0e52653 66128ac 0e52653 66128ac b35a08e 0e52653 b3f2d3d 29a8952 b3f2d3d 8174974 49f0804 0ca9296 49f0804 8174974 0ca9296 8174974 0ca9296 66128ac 8174974 b35a08e 49f0804 b35a08e 49f0804 b35a08e 66128ac 8174974 29a8952 8174974 ef8cc0f 8174974 e16b3ce 29a8952 8174974 e16b3ce 8174974 d40453d e16b3ce 29a8952 e16b3ce b3f2d3d 29a8952 e16b3ce 29a8952 e16b3ce 29a8952 e6fc2f8 29a8952 e6fc2f8 29a8952 e6fc2f8 29a8952 ef8cc0f 29a8952 8174974 ef8cc0f 29a8952 b3f2d3d e16b3ce d40453d 29a8952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Smart Customer Support Assistant (Enhanced UI Version)
# Note: Core analysis logic remains unchanged, now with text generation and customer selection
import streamlit as st
from transformers import pipeline
import re
# ------------------------------
# Load models (now includes 3rd: text generation)
# ------------------------------
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
# ------------------------------
# Candidate tasks / prompts
# ------------------------------
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
def generate_response(intent):
prompt = f"Generate a polite and helpful customer service response for the request '{intent}'. Include a greeting, summary of current status like plan or balance using anonymized placeholders (e.g. Plan X, Β₯X), a suitable recommendation, and end with a question offering assistance."
output = text_generator(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text']
return output
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
# ------------------------------
# Emotion processing
# ------------------------------
def refine_emotion_label(text, model_emotion):
text_lower = text.lower()
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
exclamations = text.count("!")
upper_words = sum(1 for word in text.split() if word.isupper())
signal_score = sum([
any(word in text_lower for word in urgent_keywords),
exclamations >= 2,
upper_words >= 1
])
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2:
return "urgency"
return model_emotion
def get_emotion_label(emotion_result, text):
sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True)
return refine_emotion_label(text, sorted_emotions[0]['label'])
def get_emotion_score(emotion):
if emotion.lower() in urgent_emotions:
return 1.0
elif emotion.lower() in moderate_emotions:
return 0.6
else:
return 0.2
# ------------------------------
# UI: Sidebar for customer selection
# ------------------------------
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
st.sidebar.title("π Customer Selector")
if "customers" not in st.session_state:
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []}
customer_names = list(st.session_state.customers.keys())
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
# Load or init selected customer's session
if "chat_sessions" not in st.session_state:
st.session_state.chat_sessions = {}
if selected_customer not in st.session_state.chat_sessions:
st.session_state.chat_sessions[selected_customer] = {
"chat": [],
"system_result": None,
"agent_reply": "",
"support_required": ""
}
session = st.session_state.chat_sessions[selected_customer]
# ------------------------------
# Main Interface
# ------------------------------
st.title("Smart Customer Support Assistant (for Agents Only)")
st.markdown("### Conversation")
for msg in session["chat"]:
with st.chat_message(msg['role']):
st.markdown(msg['content'])
col1, col2 = st.columns([6,1])
with col1:
user_input = st.text_input("Enter customer message:", key="user_input")
with col2:
analyze_clicked = st.button("Analyze", use_container_width=True)
if analyze_clicked and user_input.strip():
emotion_result = emotion_classifier(user_input)
emotion_label = get_emotion_label(emotion_result, user_input)
emotion_score = get_emotion_score(emotion_label)
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
content_score = 0.0
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
content_score += 0.4
if any(label in ["top up balance", "reactivate service"] for label in top_intents):
content_score += 0.4
final_score = 0.5 * emotion_score + 0.5 * content_score
session["chat"].append({"role": "user", "content": user_input})
if final_score < 0.5 and top_intents:
intent = top_intents[0]
response = generate_response(intent)
session["chat"].append({"role": "assistant", "content": response})
session["system_result"] = None
session["support_required"] = "π’ Automated response handled this request."
else:
session["system_result"] = {
"emotion": emotion_label,
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
"intents": top_intents
}
session["support_required"] = "π΄ Human support required."
if session["support_required"]:
st.markdown(f"### {session['support_required']}")
st.subheader("Agent Response Console")
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"])
if st.button("Send Reply"):
if session["agent_reply"].strip():
session["chat"].append({"role": "assistant", "content": session["agent_reply"]})
session["agent_reply"] = ""
session["system_result"] = None
session["support_required"] = ""
if session["system_result"] is not None:
st.markdown("#### Customer Status")
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
st.markdown("#### Detected Customer Needs")
for intent in session['system_result']['intents']:
suggestion = generate_response(intent)
st.markdown(f"**β’ {intent.capitalize()}**")
st.code(suggestion)
if st.button("Copy to agent reply box", key=f"btn_{selected_customer}_{intent}"):
session["agent_reply"] = suggestion
|