JoanParanoid's picture
Update app.py
bc5a4d3 verified
raw
history blame
1.54 kB
import streamlit as st
from transformers import pipeline
def analyze_financial_news():
access = "hf_"
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
# Load the text classification model pipeline
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
st.set_page_config(page_title="Financial News Analysis", page_icon="β™•")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Analyze corresponding Topic and Trend for Financial News!")
st.image("./Fin.jpg", use_column_width=True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
label_1 = ""
score_1 = 0.0
label_2 = ""
score_2 = 0.0
analyze_clicked = st.button("Analyze")
if analyze_clicked:
# Perform text analysis on the input text
results_1 = analysis(text)[0]
results_2 = classification(text)[0]
label_1 = results_1["label"]
score_1 = results_1["score"]
label_2 = results_2["label"]
score_2 = results_2["score"]
# Display the results
st.write("Financial Text:", text)
st.write("Trend:", label_1)
st.write("Trend_Score:", score_1)
st.write("Finance Topic:", label_2)
st.write("Topic_Score:", score_2)
def main():
analyze_financial_news()
if __name__ == "__main__":
main()