JoanParanoid commited on
Commit
bc5a4d3
·
verified ·
1 Parent(s): ebc853a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -31
app.py CHANGED
@@ -1,44 +1,51 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- access = "hf_"
5
- token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
 
6
 
7
- # Load the text classification model pipeline
8
- analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
9
- classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
10
 
11
- st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
12
 
13
- # Streamlit application layout
14
- st.title("Financial News Analysis")
15
- st.write("Analyze corresponding Topic and Trend for Financial News!")
16
- st.image("./Fin.jpg", use_column_width=True)
17
 
18
- # Text input for user to enter the text
19
- text = st.text_area("Enter the Financial News", "")
20
 
21
- label_1 = ""
22
- score_1 = 0.0
23
- label_2 = ""
24
- score_2 = 0.0
25
 
26
- analyze_clicked = st.button("Analyze")
27
 
28
- if analyze_clicked:
29
- # Perform text analysis on the input text
30
- results_1 = analysis(text)[0]
31
- results_2 = classification(text)[0]
32
 
33
- label_1 = results_1["label"]
34
- score_1 = results_1["score"]
35
- label_2 = results_2["label"]
36
- score_2 = results_2["score"]
37
 
38
- # Display the results
39
- st.write("Financial Text:", text)
40
- st.write("Trend:", label_1)
41
- st.write("Trend_Score:", score_1)
42
 
43
- st.write("Finance Topic:", label_2)
44
- st.write("Topic_Score:", score_2)
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ def analyze_financial_news():
5
+ access = "hf_"
6
+ token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
7
 
8
+ # Load the text classification model pipeline
9
+ analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
10
+ classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
11
 
12
+ st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
13
 
14
+ # Streamlit application layout
15
+ st.title("Financial News Analysis")
16
+ st.write("Analyze corresponding Topic and Trend for Financial News!")
17
+ st.image("./Fin.jpg", use_column_width=True)
18
 
19
+ # Text input for user to enter the text
20
+ text = st.text_area("Enter the Financial News", "")
21
 
22
+ label_1 = ""
23
+ score_1 = 0.0
24
+ label_2 = ""
25
+ score_2 = 0.0
26
 
27
+ analyze_clicked = st.button("Analyze")
28
 
29
+ if analyze_clicked:
30
+ # Perform text analysis on the input text
31
+ results_1 = analysis(text)[0]
32
+ results_2 = classification(text)[0]
33
 
34
+ label_1 = results_1["label"]
35
+ score_1 = results_1["score"]
36
+ label_2 = results_2["label"]
37
+ score_2 = results_2["score"]
38
 
39
+ # Display the results
40
+ st.write("Financial Text:", text)
41
+ st.write("Trend:", label_1)
42
+ st.write("Trend_Score:", score_1)
43
 
44
+ st.write("Finance Topic:", label_2)
45
+ st.write("Topic_Score:", score_2)
46
+
47
+ def main():
48
+ analyze_financial_news()
49
+
50
+ if __name__ == "__main__":
51
+ main()