File size: 1,543 Bytes
5e62651
 
 
bc5a4d3
 
 
5e62651
bc5a4d3
 
 
0796587
bc5a4d3
0796587
bc5a4d3
 
 
 
0796587
bc5a4d3
 
0796587
bc5a4d3
 
 
 
8e2961e
bc5a4d3
ebc853a
bc5a4d3
 
 
 
8e2961e
bc5a4d3
 
 
 
8e2961e
bc5a4d3
 
 
 
0796587
bc5a4d3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
from transformers import pipeline

def analyze_financial_news():
    access = "hf_"
    token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"

    # Load the text classification model pipeline
    analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
    classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)

    st.set_page_config(page_title="Financial News Analysis", page_icon="♕")

    # Streamlit application layout
    st.title("Financial News Analysis")
    st.write("Analyze corresponding Topic and Trend for Financial News!")
    st.image("./Fin.jpg", use_column_width=True)

    # Text input for user to enter the text
    text = st.text_area("Enter the Financial News", "")

    label_1 = ""
    score_1 = 0.0
    label_2 = ""
    score_2 = 0.0

    analyze_clicked = st.button("Analyze")

    if analyze_clicked:
        # Perform text analysis on the input text
        results_1 = analysis(text)[0]
        results_2 = classification(text)[0]

        label_1 = results_1["label"]
        score_1 = results_1["score"]
        label_2 = results_2["label"]
        score_2 = results_2["score"]

    # Display the results
    st.write("Financial Text:", text)
    st.write("Trend:", label_1)
    st.write("Trend_Score:", score_1)

    st.write("Finance Topic:", label_2)
    st.write("Topic_Score:", score_2)

def main():
    analyze_financial_news()

if __name__ == "__main__":
    main()