File size: 1,565 Bytes
5e62651 10ed7ab 5e62651 bc5a4d3 10ed7ab bc5a4d3 0796587 10ed7ab bc5a4d3 0796587 10ed7ab ebc853a 10ed7ab 8e2961e 10ed7ab bc5a4d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from transformers import pipeline
def analyze_financial_news():
access = "hf_"
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
# Load the text classification model pipeline
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
sentiment_analysis = pipeline("sentiment-analysis")
st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Analyze corresponding Topic and Trend for Financial News!")
st.image("./Fin.jpg", use_column_width=True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
analyze_clicked = st.button("Analyze")
if analyze_clicked:
# Perform text classification on the input text
results = classification(text)[0]
# Check if the classification is "Energy | Oil"
if results["label"] == "Energy | Oil":
# If the news is related to Energy | Oil, perform sentiment analysis
sentiment_results = sentiment_analysis(text)[0]
# Display the sentiment analysis result
st.write("Sentiment:", sentiment_results["label"])
st.write("Sentiment Score:", sentiment_results["score"])
else:
st.write("The provided news is not relevant to Energy | Oil.")
def main():
analyze_financial_news()
if __name__ == "__main__":
main()
|