JoanParanoid commited on
Commit
10ed7ab
·
verified ·
1 Parent(s): 0bd9263

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -17
app.py CHANGED
@@ -1,33 +1,42 @@
1
- import os
2
  import streamlit as st
3
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
4
 
5
  def analyze_financial_news():
 
 
 
 
 
 
 
 
 
 
6
  st.title("Financial News Analysis")
7
  st.write("Analyze corresponding Topic and Trend for Financial News!")
8
  st.image("./Fin.jpg", use_column_width=True)
9
 
10
- # Text input for user to enter the financial news
11
  text = st.text_area("Enter the Financial News", "")
12
 
13
- # Load the summarization pipeline
14
- summarization_pipe = pipeline("summarization", model="facebook/bart-large-cnn")
15
-
16
- # Use pipeline as a high-level helper
17
- summary = summarization_pipe(text)[0]['summary_text']
18
 
19
- # Perform sentiment analysis on the summarized text
20
- sentiment_pipe = pipeline("sentiment-analysis")
21
- sentiment_results = sentiment_pipe(summary)[0]
22
 
23
- # Display the results
24
- st.write("Financial Text:", text)
25
- st.write("Summary:", summary)
26
- st.write("Sentiment:", sentiment_results["label"])
27
- st.write("Sentiment Score:", sentiment_results["score"])
 
 
 
 
 
28
 
29
  def main():
30
- st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
31
  analyze_financial_news()
32
 
33
  if __name__ == "__main__":
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
  def analyze_financial_news():
5
+ access = "hf_"
6
+ token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
7
+
8
+ # Load the text classification model pipeline
9
+ classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
10
+ sentiment_analysis = pipeline("sentiment-analysis")
11
+
12
+ st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
13
+
14
+ # Streamlit application layout
15
  st.title("Financial News Analysis")
16
  st.write("Analyze corresponding Topic and Trend for Financial News!")
17
  st.image("./Fin.jpg", use_column_width=True)
18
 
19
+ # Text input for user to enter the text
20
  text = st.text_area("Enter the Financial News", "")
21
 
22
+ analyze_clicked = st.button("Analyze")
 
 
 
 
23
 
24
+ if analyze_clicked:
25
+ # Perform text classification on the input text
26
+ results = classification(text)[0]
27
 
28
+ # Check if the classification is "Energy | Oil"
29
+ if results["label"] == "Energy | Oil":
30
+ # If the news is related to Energy | Oil, perform sentiment analysis
31
+ sentiment_results = sentiment_analysis(text)[0]
32
+
33
+ # Display the sentiment analysis result
34
+ st.write("Sentiment:", sentiment_results["label"])
35
+ st.write("Sentiment Score:", sentiment_results["score"])
36
+ else:
37
+ st.write("The provided news is not relevant to Energy | Oil.")
38
 
39
  def main():
 
40
  analyze_financial_news()
41
 
42
  if __name__ == "__main__":