JoanParanoid commited on
Commit
0bd9263
·
verified ·
1 Parent(s): bc5a4d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -31
app.py CHANGED
@@ -1,50 +1,33 @@
 
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
  def analyze_financial_news():
5
- access = "hf_"
6
- token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
7
-
8
- # Load the text classification model pipeline
9
- analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
10
- classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
11
-
12
- st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
13
-
14
- # Streamlit application layout
15
  st.title("Financial News Analysis")
16
  st.write("Analyze corresponding Topic and Trend for Financial News!")
17
  st.image("./Fin.jpg", use_column_width=True)
18
 
19
- # Text input for user to enter the text
20
  text = st.text_area("Enter the Financial News", "")
21
 
22
- label_1 = ""
23
- score_1 = 0.0
24
- label_2 = ""
25
- score_2 = 0.0
26
 
27
- analyze_clicked = st.button("Analyze")
 
28
 
29
- if analyze_clicked:
30
- # Perform text analysis on the input text
31
- results_1 = analysis(text)[0]
32
- results_2 = classification(text)[0]
33
-
34
- label_1 = results_1["label"]
35
- score_1 = results_1["score"]
36
- label_2 = results_2["label"]
37
- score_2 = results_2["score"]
38
 
39
  # Display the results
40
  st.write("Financial Text:", text)
41
- st.write("Trend:", label_1)
42
- st.write("Trend_Score:", score_1)
43
-
44
- st.write("Finance Topic:", label_2)
45
- st.write("Topic_Score:", score_2)
46
 
47
  def main():
 
48
  analyze_financial_news()
49
 
50
  if __name__ == "__main__":
 
1
+ import os
2
  import streamlit as st
3
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
4
 
5
  def analyze_financial_news():
 
 
 
 
 
 
 
 
 
 
6
  st.title("Financial News Analysis")
7
  st.write("Analyze corresponding Topic and Trend for Financial News!")
8
  st.image("./Fin.jpg", use_column_width=True)
9
 
10
+ # Text input for user to enter the financial news
11
  text = st.text_area("Enter the Financial News", "")
12
 
13
+ # Load the summarization pipeline
14
+ summarization_pipe = pipeline("summarization", model="facebook/bart-large-cnn")
 
 
15
 
16
+ # Use pipeline as a high-level helper
17
+ summary = summarization_pipe(text)[0]['summary_text']
18
 
19
+ # Perform sentiment analysis on the summarized text
20
+ sentiment_pipe = pipeline("sentiment-analysis")
21
+ sentiment_results = sentiment_pipe(summary)[0]
 
 
 
 
 
 
22
 
23
  # Display the results
24
  st.write("Financial Text:", text)
25
+ st.write("Summary:", summary)
26
+ st.write("Sentiment:", sentiment_results["label"])
27
+ st.write("Sentiment Score:", sentiment_results["score"])
 
 
28
 
29
  def main():
30
+ st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
31
  analyze_financial_news()
32
 
33
  if __name__ == "__main__":