File size: 38,833 Bytes
e3973a0
bc852b0
 
 
 
 
 
e3973a0
bc852b0
e3973a0
 
 
 
 
 
 
 
bc852b0
e3973a0
 
bc852b0
e3973a0
bc852b0
 
 
 
e3973a0
bc852b0
e3973a0
 
 
30fbf64
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
e3973a0
 
 
 
 
 
bc852b0
 
e3973a0
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
 
e3973a0
 
 
 
bc852b0
 
 
e3973a0
bc852b0
 
e3973a0
bc852b0
 
 
 
 
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
 
 
 
 
 
e3973a0
bc852b0
 
e3973a0
bc852b0
 
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
e3973a0
412864c
 
 
 
 
e3973a0
 
412864c
 
 
 
 
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
e3973a0
412864c
 
 
e3973a0
 
 
 
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
 
e3973a0
bc852b0
e3973a0
bc852b0
e3973a0
 
bc852b0
e3973a0
 
 
 
bc852b0
e3973a0
bc852b0
 
e3973a0
 
 
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
e3973a0
bc852b0
e3973a0
bc852b0
e3973a0
 
bc852b0
 
 
 
e3973a0
bc852b0
e3973a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc852b0
e3973a0
 
 
 
 
 
 
 
 
412864c
e3973a0
 
 
 
 
 
bc852b0
e3973a0
 
 
 
 
bc852b0
 
e3973a0
bc852b0
 
e3973a0
bc852b0
 
e3973a0
 
 
 
 
bc852b0
 
e3973a0
 
 
 
 
 
bc852b0
 
e3973a0
bc852b0
 
 
 
 
 
 
 
 
 
 
412864c
2615482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412864c
2615482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3973a0
2615482
bc852b0
2615482
 
 
bc852b0
2615482
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
from haystack import *
from haystack.components.generators.openai import OpenAIGenerator
from haystack.components.builders import PromptBuilder
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.utils import Secret
from tenacity import retry, stop_after_attempt, wait_exponential
from pathlib import Path
import hashlib
from datetime import *
from typing import *
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from rouge_score import rouge_scorer
import pandas as pd
from dataclasses import *
import json
import logging
import os
import re
import pickle

# Setup logging
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

class OpenAIDateParser:
    """Uses OpenAI to parse complex Thai date formats"""
    
    def __init__(self, api_key: str, model: str = "gpt-4o"):
        self.generator = OpenAIGenerator(
            api_key=Secret.from_token(api_key),
            model=model
        )
        self.prompt_builder = PromptBuilder(
            template="""
            Parse the following Thai date range into a structured format:
            Date: {{date}}
            
            Return in JSON format:
            {
                "start_date": "YYYY-MM-DD",
                "end_date": "YYYY-MM-DD" (if range),
                "is_range": true/false
            }
            
            Notes:
            - Convert Buddhist Era (BE) to CE
            - Handle abbreviated Thai months
            - Account for date ranges with dashes
            - Return null for end_date if it's a single date
            
            Example inputs and outputs:
            Input: "จ 8 ก.ค. – จ 19 ส.ค. 67"
            Output: {"start_date": "2024-07-08", "end_date": "2024-08-19", "is_range": true}
            
            Input: "15 มกราคม 2567"
            Output: {"start_date": "2024-01-15", "end_date": null, "is_range": false}
            """
        )
    
    async def parse_date(self, date_str: str) -> Dict[str, Union[str, bool]]:
        """Parse complex Thai date format using OpenAI"""
        try:
            # Build prompt
            result = self.prompt_builder.run(date=date_str)
            
            # Get OpenAI response
            response = await self.generator.arun(prompt=result["prompt"])
            
            if not response or not response.get("replies"):
                raise ValueError("Empty response from OpenAI")
            
            # Parse JSON response
            parsed = json.loads(response["replies"][0])
            
            # Validate the parsed dates
            for date_field in ['start_date', 'end_date']:
                if parsed.get(date_field):
                    datetime.strptime(parsed[date_field], '%Y-%m-%d')
            
            return parsed
            
        except Exception as e:
            logger.error(f"OpenAI date parsing failed for '{date_str}': {str(e)}")
            raise ValueError(f"Could not parse date: {date_str}")

@dataclass
class ValidationResult:
    """Stores the result of a validation check"""
    is_valid: bool
    errors: List[str]
    warnings: List[str]
    normalized_data: Dict[str, str]

class ThaiTextPreprocessor:
    """Handles Thai text preprocessing and normalization"""
    
    # Thai character normalization mappings
    CHAR_MAP = {
        'ํา': 'ำ',  # Normalize sara am
        '์': '',    # Remove yamakkan
        '–': '-',   # Normalize dashes
        '—': '-',
        '٫': ',',   # Normalize separators
    }
    
    @classmethod
    def normalize_thai_text(cls, text: str) -> str:
        """Normalize Thai text by applying character mappings and spacing rules"""
        if not text:
            return text
            
        # Apply character mappings
        for old, new in cls.CHAR_MAP.items():
            text = text.replace(old, new)
        
        # Normalize whitespace
        text = re.sub(r'\s+', ' ', text.strip())
        
        # Normalize Thai numerals if present
        thai_digits = '๐๑๒๓๔๕๖๗๘๙'
        arabic_digits = '0123456789'
        
        for thai, arabic in zip(thai_digits, arabic_digits):
            text = text.replace(thai, arabic)
        
        return text

class CalendarEventValidator:
    """Validates and preprocesses calendar events"""
    
    def __init__(self, openai_api_key: str):
        self.preprocessor = ThaiTextPreprocessor()
        self.date_parser = OpenAIDateParser(api_key=openai_api_key)
    
    async def validate_event(self, event: 'CalendarEvent') -> ValidationResult:
        """Validate a calendar event and return validation results"""
        errors = []
        warnings = []
        normalized_data = {}
        
        # Validate and normalize date using OpenAI
        if event.date:
            try:
                parsed_date = await self.date_parser.parse_date(event.date)
                normalized_data['date'] = parsed_date['start_date']
                
                # If it's a date range, store it in the note
                if parsed_date['is_range'] and parsed_date['end_date']:
                    range_note = f"ถึงวันที่ {parsed_date['end_date']}"
                    if event.note:
                        normalized_data['note'] = f"{event.note}; {range_note}"
                    else:
                        normalized_data['note'] = range_note
                
            except ValueError as e:
                errors.append(f"Invalid date format: {event.date}")
        else:
            errors.append("Date is required")
        
        # Validate time format if provided
        if event.time:
            time_pattern = r'^([01]?[0-9]|2[0-3]):([0-5][0-9])$'
            if not re.match(time_pattern, event.time):
                errors.append(f"Invalid time format: {event.time}")
            normalized_data['time'] = event.time
        
        # Validate and normalize activity
        if event.activity:
            normalized_activity = self.preprocessor.normalize_thai_text(event.activity)
            if len(normalized_activity) < 3:
                warnings.append("Activity description is very short")
            normalized_data['activity'] = normalized_activity
        else:
            errors.append("Activity is required")
        
        # Validate semester
        valid_semesters = {'ภาคต้น', 'ภาคปลาย', 'ภาคฤดูร้อน'}
        if event.semester:
            normalized_semester = self.preprocessor.normalize_thai_text(event.semester)
            if normalized_semester not in valid_semesters:
                warnings.append(f"Unusual semester value: {event.semester}")
            normalized_data['semester'] = normalized_semester
        else:
            errors.append("Semester is required")
        
        # Validate event type
        valid_types = {'registration', 'deadline', 'examination', 'academic', 'holiday'}
        if event.event_type not in valid_types:
            errors.append(f"Invalid event type: {event.event_type}")
        normalized_data['event_type'] = event.event_type
        
        # Normalize note if present and not already set by date range
        if event.note and 'note' not in normalized_data:
            normalized_data['note'] = self.preprocessor.normalize_thai_text(event.note)
        
        # Normalize section if present
        if event.section:
            normalized_data['section'] = self.preprocessor.normalize_thai_text(event.section)
        
        return ValidationResult(
            is_valid=len(errors) == 0,
            errors=errors,
            warnings=warnings,
            normalized_data=normalized_data
        )

# Update CalendarEvent class to include async validation
@dataclass
class CalendarEvent:
    """Structured representation of a calendar event with validation"""

    @staticmethod
    def classify_event_type(activity: str) -> str:
        """Classify event type based on activity description"""
        activity_lower = activity.lower()
        
        keywords = {
            'registration': ['ลงทะเบียน', 'ชําระเงิน', 'ค่าธรรมเนียม', 'เปิดเรียน'],
            'deadline': ['วันสุดท้าย', 'กําหนด', 'ภายใน', 'ต้องส่ง'],
            'examination': ['สอบ', 'ปริญญานิพนธ์', 'วิทยานิพนธ์', 'สอบปากเปล่า'],
            'holiday': ['วันหยุด', 'ชดเชย', 'เทศกาล'],
        }
        
        for event_type, terms in keywords.items():
            if any(term in activity_lower for term in terms):
                return event_type
        return 'academic'
    date: str
    time: str
    activity: str
    note: str
    semester: str
    event_type: str
    section: Optional[str] = None
    
    async def initialize(self, openai_api_key: str):
        """Asynchronously validate and normalize the event"""
        validator = CalendarEventValidator(openai_api_key)
        result = await validator.validate_event(self)
        
        if not result.is_valid:
            raise ValueError(f"Invalid calendar event: {', '.join(result.errors)}")
        
        # Update with normalized data
        for field, value in result.normalized_data.items():
            setattr(self, field, value)
        
        # Log any warnings
        if result.warnings:
            logger.warning(f"Calendar event warnings: {', '.join(result.warnings)}")
    
    def to_searchable_text(self) -> str:
        """Convert event to searchable text format"""
        return f"""
        ภาคการศึกษา: {self.semester}
        ประเภท: {self.event_type}
        วันที่: {self.date}
        เวลา: {self.time}
        กิจกรรม: {self.activity}
        หมวดหมู่: {self.section or '-'}
        หมายเหตุ: {self.note}
        """.strip()

class CacheManager:
    """Manages caching for different components of the RAG pipeline"""
    
    def __init__(self, cache_dir: Path, ttl: int = 3600):
        """
        Initialize CacheManager
        
        Args:
            cache_dir: Directory to store cache files
            ttl: Time-to-live in seconds for cache entries (default: 1 hour)
        """
        self.cache_dir = cache_dir
        self.ttl = ttl
        self.embeddings_cache = self._load_cache("embeddings")
        self.query_cache = self._load_cache("queries")
        self.document_cache = self._load_cache("documents")
        
    def _generate_key(self, data: Union[str, Dict, Any]) -> str:
        """Generate a unique cache key"""
        if isinstance(data, str):
            content = data.encode('utf-8')
        else:
            content = json.dumps(data, sort_keys=True).encode('utf-8')
        return hashlib.md5(content).hexdigest()
    
    def _load_cache(self, cache_type: str) -> Dict:
        """Load cache from disk"""
        cache_path = self.cache_dir / f"{cache_type}_cache.pkl"
        if cache_path.exists():
            try:
                with open(cache_path, 'rb') as f:
                    cache = pickle.load(f)
                # Clean expired entries
                self._clean_expired_entries(cache)
                return cache
            except Exception as e:
                logger.warning(f"Failed to load {cache_type} cache: {e}")
                return {}
        return {}
    
    def _save_cache(self, cache_type: str, cache_data: Dict):
        """Save cache to disk"""
        cache_path = self.cache_dir / f"{cache_type}_cache.pkl"
        try:
            with open(cache_path, 'wb') as f:
                pickle.dump(cache_data, f)
        except Exception as e:
            logger.error(f"Failed to save {cache_type} cache: {e}")
    
    def _clean_expired_entries(self, cache: Dict):
        """Remove expired cache entries"""
        current_time = datetime.now()
        expired_keys = [
            key for key, (_, timestamp) in cache.items()
            if current_time - timestamp > timedelta(seconds=self.ttl)
        ]
        for key in expired_keys:
            del cache[key]
    
    def get_embedding_cache(self, text: str) -> Optional[Any]:
        """Get cached embedding for text"""
        key = self._generate_key(text)
        if key in self.embeddings_cache:
            embedding, timestamp = self.embeddings_cache[key]
            if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
                return embedding
        return None
    
    def set_embedding_cache(self, text: str, embedding: Any):
        """Cache embedding for text"""
        key = self._generate_key(text)
        self.embeddings_cache[key] = (embedding, datetime.now())
        self._save_cache("embeddings", self.embeddings_cache)
    
    def get_query_cache(self, query: str) -> Optional[Dict]:
        """Get cached query results"""
        key = self._generate_key(query)
        if key in self.query_cache:
            result, timestamp = self.query_cache[key]
            if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
                return result
        return None
    
    def set_query_cache(self, query: str, result: Dict):
        """Cache query results"""
        key = self._generate_key(query)
        self.query_cache[key] = (result, datetime.now())
        self._save_cache("queries", self.query_cache)
    
    def get_document_cache(self, doc_id: str) -> Optional[Any]:
        """Get cached document"""
        if doc_id in self.document_cache:
            doc, timestamp = self.document_cache[doc_id]
            if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
                return doc
        return None
    
    def set_document_cache(self, doc_id: str, document: Any):
        """Cache document"""
        self.document_cache[doc_id] = (document, datetime.now())
        self._save_cache("documents", self.document_cache)
    
    def clear_cache(self, cache_type: Optional[str] = None):
        """Clear specific or all caches"""
        if cache_type == "embeddings":
            self.embeddings_cache.clear()
            self._save_cache("embeddings", self.embeddings_cache)
        elif cache_type == "queries":
            self.query_cache.clear()
            self._save_cache("queries", self.query_cache)
        elif cache_type == "documents":
            self.document_cache.clear()
            self._save_cache("documents", self.document_cache)
        else:
            self.embeddings_cache.clear()
            self.query_cache.clear()
            self.document_cache.clear()
            for cache_type in ["embeddings", "queries", "documents"]:
                self._save_cache(cache_type, {})

@dataclass
class ModelConfig:
    """Configuration for language models and embeddings"""
    openai_api_key: str
    embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
    openai_model: str = "gpt-4o"
    temperature: float = 0.7
    max_tokens: int = 2000
    top_p: float = 0.95
    frequency_penalty: float = 0.0
    presence_penalty: float = 0.0

@dataclass
class RetrieverConfig:
    """Configuration for document retrieval"""
    top_k: int = 5
    similarity_threshold: float = 0.7
    reranking_enabled: bool = False
    reranking_model: Optional[str] = None
    filter_duplicates: bool = True
    min_document_length: int = 10

@dataclass
class CacheConfig:
    """Configuration for caching behavior"""
    enabled: bool = True
    cache_dir: Path = field(default_factory=lambda: Path("./cache"))
    embeddings_cache_ttl: int = 86400  # 24 hours
    query_cache_ttl: int = 3600  # 1 hour
    max_cache_size: int = 1000  # entries
    cache_cleanup_interval: int = 3600  # 1 hour

@dataclass
class ProcessingConfig:
    """Configuration for data processing"""
    batch_size: int = 32
    max_retries: int = 3
    timeout: int = 30
    max_concurrent_requests: int = 5
    chunk_size: int = 512
    chunk_overlap: int = 50
    preprocessing_workers: int = 4

@dataclass
class MonitoringConfig:
    """Configuration for monitoring and logging"""
    enable_monitoring: bool = True
    log_level: str = "INFO"
    metrics_enabled: bool = True
    trace_enabled: bool = True
    performance_logging: bool = True
    slow_query_threshold: float = 5.0  # seconds
    health_check_interval: int = 300  # 5 minutes

@dataclass
class LocalizationConfig:
    """Configuration for Thai language handling"""
    thai_tokenizer_model: str = "thai-tokenizer"
    enable_thai_normalization: bool = True
    remove_thai_tones: bool = False
    keep_english: bool = True
    custom_stopwords: List[str] = field(default_factory=list)
    custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)
          
@dataclass
class PipelineConfig:
    """Main configuration for the RAG pipeline"""
    # Model configurations
    model: ModelConfig
    
    # Retriever settings
    retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
    
    # Cache settings
    cache: CacheConfig = field(default_factory=CacheConfig)
    
    # Processing settings
    processing: ProcessingConfig = field(default_factory=ProcessingConfig)
    
    # Monitoring settings
    monitoring: MonitoringConfig = field(default_factory=MonitoringConfig)
    
    # Localization settings
    localization: LocalizationConfig = field(default_factory=LocalizationConfig)
    
    # Rate limiting
    rate_limit_enabled: bool = True
    requests_per_minute: int = 60
    
    # System settings
    debug_mode: bool = False
    development_mode: bool = False
    
    def __post_init__(self):
        """Validate configuration and create necessary directories"""
        if not self.model.openai_api_key:
            raise ValueError("OpenAI API key is required")
        
        if self.cache.enabled:
            self.cache.cache_dir.mkdir(parents=True, exist_ok=True)
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert configuration to dictionary format"""
        return {
            "model_config": {
                "embedder_model": self.model.embedder_model,
                "openai_model": self.model.openai_model,
                "temperature": self.model.temperature,
                # Add other relevant fields
            },
            "retriever_config": {
                "top_k": self.retriever.top_k,
                "similarity_threshold": self.retriever.similarity_threshold,
                # Add other relevant fields
            },
            # Add other configuration sections
        }
    
    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any]) -> 'PipelineConfig':
        """Create configuration from dictionary"""
        model_config = ModelConfig(**config_dict.get("model_config", {}))
        retriever_config = RetrieverConfig(**config_dict.get("retriever_config", {}))
        # Create other config objects
        
        return cls(
            model=model_config,
            retriever=retriever_config,
            # Add other configuration objects
        )

def create_default_config(api_key: str) -> PipelineConfig:
    """Create a default configuration with the given API key"""
    model_config = ModelConfig(
        openai_api_key=api_key,
        embedder_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
    )
    return PipelineConfig(
        model=model_config,
        retriever=RetrieverConfig(),
        cache=CacheConfig(),
        processing=ProcessingConfig(),
        monitoring=MonitoringConfig(),
        localization=LocalizationConfig()
    )

class CalendarDataProcessor:
    """Process and structure calendar data"""
    
    @staticmethod
    def parse_calendar_json(json_data: List[Dict]) -> List[CalendarEvent]:
        events = []
        
        for semester_data in json_data:
            semester = semester_data['education']
            
            # Process regular schedule events
            for event in semester_data.get('schedule', []):
                # Check if this is a regular event or a section with details
                if 'section' in event and 'details' in event:
                    # This is a section with details
                    section = event['section']
                    for detail in event['details']:
                        # Extract semester-specific information if available
                        if 'ภาคต้น' in detail and 'ภาคปลาย' in detail:
                            # Handle both semesters
                            semesters = ['ภาคต้น', 'ภาคปลาย']
                            for sem in semesters:
                                events.append(CalendarEvent(
                                    date=detail.get(sem, ''),
                                    time='',
                                    activity=detail.get('title', ''),
                                    note=section,
                                    semester=sem,
                                    event_type='deadline',
                                    section=section
                                ))
                        else:
                            # Single event
                            events.append(CalendarEvent(
                                date=detail.get('date', ''),
                                time='',
                                activity=detail.get('title', ''),
                                note=section,
                                semester=semester,
                                event_type='deadline',
                                section=section
                            ))
                else:
                    # This is a regular event
                    event_type = CalendarEvent.classify_event_type(event.get('activity', ''))
                    events.append(CalendarEvent(
                        date=event.get('date', ''),
                        time=event.get('time', ''),
                        activity=event.get('activity', ''),
                        note=event.get('note', ''),
                        semester=semester,
                        event_type=event_type
                    ))
        
        return events

# Update the EnhancedDocumentStore class to use caching
class EnhancedDocumentStore:
    """Enhanced document store with caching capabilities"""
    
    def __init__(self, config: PipelineConfig):
        self.store = InMemoryDocumentStore()
        self.embedder = SentenceTransformersDocumentEmbedder(
            model=config.model.embedder_model
        )
        self.cache_manager = CacheManager(
            cache_dir=config.cache.cache_dir,
            ttl=config.cache.embeddings_cache_ttl
        )
        
        # Configure for Thai text
        self.embedder.warm_up()
        
        self.events = []
        self.event_type_index = {}
        self.semester_index = {}
    
    def _compute_embedding(self, text: str) -> Any:
        """Compute embedding with caching"""
        cached_embedding = self.cache_manager.get_embedding_cache(text)
        if cached_embedding is not None:
            return cached_embedding
            
        doc = Document(content=text)
        embedding = self.embedder.run(documents=[doc])["documents"][0].embedding
        self.cache_manager.set_embedding_cache(text, embedding)
        return embedding
    
    def add_events(self, events: List[CalendarEvent]):
        """Add events with caching"""
        documents = []
        
        for event in events:
            # Store event
            self.events.append(event)
            event_idx = len(self.events) - 1
            
            # Update indices
            if event.event_type not in self.event_type_index:
                self.event_type_index[event.event_type] = []
            self.event_type_index[event.event_type].append(event_idx)
            
            if event.semester not in self.semester_index:
                self.semester_index[event.semester] = []
            self.semester_index[event.semester].append(event_idx)
            
            # Create document with cached embedding
            text = event.to_searchable_text()
            embedding = self._compute_embedding(text)
            
            doc = Document(
                content=text,
                embedding=embedding,
                meta={
                    'event_type': event.event_type,
                    'semester': event.semester,
                    'date': event.date
                }
            )
            documents.append(doc)
            
            # Cache document
            self.cache_manager.set_document_cache(str(event_idx), doc)
        
        # Store documents
        self.store.write_documents(documents)
    
    def search(self, 
              query: str, 
              event_type: Optional[str] = None,
              semester: Optional[str] = None,
              top_k: int = 5) -> List[Document]:
        """Search with query caching"""
        # Check cache first
        cache_key = json.dumps({
            'query': query,
            'event_type': event_type,
            'semester': semester,
            'top_k': top_k
        })
        cached_results = self.cache_manager.get_query_cache(cache_key)
        if cached_results is not None:
            return cached_results
            
        # Compute query embedding
        query_embedding = self._compute_embedding(query)
        
        # Perform search
        retriever = InMemoryEmbeddingRetriever(
            document_store=self.store,
            top_k=top_k * 2
        )
        
        results = retriever.run(query_embedding=query_embedding)["documents"]
        
        # Filter results
        filtered_results = []
        for doc in results:
            if event_type and doc.meta['event_type'] != event_type:
                continue
            if semester and doc.meta['semester'] != semester:
                continue
            filtered_results.append(doc)
        
        final_results = filtered_results[:top_k]
        
        # Cache results
        self.cache_manager.set_query_cache(cache_key, final_results)
        
        return final_results

class AdvancedQueryProcessor:
    """Process queries with better understanding"""
    
    def __init__(self, config: PipelineConfig):
        self.generator = OpenAIGenerator(
            api_key=Secret.from_token(config.model.openai_api_key),
            model=config.model.openai_model
        )
        self.prompt_builder = PromptBuilder(
            template="""
            Analyze this academic calendar query (in Thai):
            Query: {{query}}
            
            Determine:
            1. The type of information being requested
            2. Any specific semester mentioned
            3. Key terms to look for
            
            Return as JSON:
            {
                "event_type": "registration|deadline|examination|academic|holiday",
                "semester": "term mentioned or null",
                "key_terms": ["up to 3 most important terms"],
                "response_format": "list|single|detailed"
            }
            """)
        
    def process_query(self, query: str) -> Dict[str, Any]:
        """Process and analyze query"""
        try:
            # Get analysis
            result = self.prompt_builder.run(query=query)
            response = self.generator.run(prompt=result["prompt"])
            
            # Add validation for empty response
            if not response or not response.get("replies") or not response["replies"][0]:
                logger.warning("Received empty response from generator")
                return self._get_default_analysis(query)
            
            try:
                # Parse response with error handling
                analysis = json.loads(response["replies"][0])
                
                # Validate required fields
                required_fields = ["event_type", "semester", "key_terms", "response_format"]
                for field in required_fields:
                    if field not in analysis:
                        logger.warning(f"Missing required field: {field}")
                        return self._get_default_analysis(query)
                
                return {
                    "original_query": query,
                    **analysis
                }
                
            except json.JSONDecodeError as je:
                logger.error(f"JSON parsing failed: {str(je)}")
                return self._get_default_analysis(query)
                
        except Exception as e:
            logger.error(f"Query processing failed: {str(e)}")
            return self._get_default_analysis(query)
    
    def _get_default_analysis(self, query: str) -> Dict[str, Any]:
        """Return default analysis when processing fails"""
        logger.info("Returning default analysis")
        return {
            "original_query": query,
            "event_type": None,
            "semester": None,
            "key_terms": [],
            "response_format": "detailed"
        }

@dataclass
class RateLimitConfig:
    """Configuration for rate limiting"""
    requests_per_minute: int = 60
    max_retries: int = 3
    base_delay: float = 1.0
    max_delay: float = 60.0
    timeout: float = 30.0
    concurrent_requests: int = 5

class APIError(Exception):
    """Base class for API related errors"""
    def __init__(self, message: str, status_code: Optional[int] = None, response: Optional[Dict] = None):
        super().__init__(message)
        self.status_code = status_code
        self.response = response

class RateLimitExceededError(APIError):
    """Raised when rate limit is exceeded"""
    pass

class OpenAIRateLimiter:
    """Rate limiter with advanced error handling for OpenAI API"""
    
    def __init__(self, config: RateLimitConfig):
        self.config = config
        self.requests = deque(maxlen=config.requests_per_minute)
        self.semaphore = asyncio.Semaphore(config.concurrent_requests)
        self.total_requests = 0
        self.errors = deque(maxlen=1000)  # Store recent errors
        self.start_time = datetime.now()
    
    async def acquire(self):
        """Acquire permission to make a request"""
        now = time.time()
        
        # Clean old requests
        while self.requests and self.requests[0] < now - 60:
            self.requests.popleft()
        
        # Check if we're at the limit
        if len(self.requests) >= self.config.requests_per_minute:
            wait_time = 60 - (now - self.requests[0])
            logger.warning(f"Rate limit reached. Waiting {wait_time:.2f} seconds")
            await asyncio.sleep(wait_time)
        
        # Add new request timestamp
        self.requests.append(now)
        self.total_requests += 1
    
    def get_usage_stats(self) -> Dict[str, Any]:
        """Get current usage statistics"""
        return {
            "total_requests": self.total_requests,
            "current_rpm": len(self.requests),
            "uptime": (datetime.now() - self.start_time).total_seconds(),
            "error_rate": len(self.errors) / self.total_requests if self.total_requests > 0 else 0
        }
    
    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=60),
        reraise=True
    )
    async def execute_with_retry(self, func, *args, **kwargs):
        """Execute API call with retry logic"""
        try:
            async with self.semaphore:
                await self.acquire()
                return await func(*args, **kwargs)
                
        except Exception as e:
            error_info = {
                "timestamp": datetime.now(),
                "error_type": type(e).__name__,
                "message": str(e)
            }
            self.errors.append(error_info)
            
            if isinstance(e, RateLimitExceededError):
                logger.warning("Rate limit exceeded, backing off...")
                await asyncio.sleep(self.config.base_delay)
                raise
                
            elif "timeout" in str(e).lower():
                logger.error(f"Timeout error: {str(e)}")
                raise APIError(f"Request timed out after {self.config.timeout} seconds")
                
            else:
                logger.error(f"API error: {str(e)}")
                raise
             
class ResponseGenerator:
    """Generate responses with better context utilization"""
    
    def __init__(self, config: PipelineConfig):
        self.generator = OpenAIGenerator(
            api_key=Secret.from_token(config.model.openai_api_key),
            model=config.model.openai_model
        )
        self.prompt_builder = PromptBuilder(
            template="""
            You are a helpful academic advisor. Answer the following query using the provided calendar information.
            
            Query: {{query}}
            
            Relevant Calendar Information:
            {% for doc in context %}
            ---
            {{doc.content}}
            {% endfor %}
            
            Format: {{format}}
            
            Guidelines:
            1. Answer in Thai language
            2. Be specific about dates and requirements
            3. Include relevant notes or conditions
            4. Format the response according to the specified format
            
            Provide your response:
            """)
        
    def generate_response(self, 
                         query: str,
                         documents: List[Document],
                         query_info: Dict[str, Any]) -> str:
        """Generate response using retrieved documents"""
        try:
            result = self.prompt_builder.run(
                query=query,
                context=documents,
                format=query_info["response_format"]
            )
            
            response = self.generator.run(prompt=result["prompt"])
            return response["replies"][0]
            
        except Exception as e:
            logger.error(f"Response generation failed: {str(e)}")
            return "ขออภัย ไม่สามารถประมวลผลคำตอบได้ในขณะนี้"

class AcademicCalendarRAG:
    """Main RAG pipeline for academic calendar queries"""
    
    def __init__(self, config: PipelineConfig):
        self.config = config
        self.document_store = EnhancedDocumentStore(config)
        self.query_processor = AdvancedQueryProcessor(config)
        self.response_generator = ResponseGenerator(config)
        
    def load_data(self, json_data: List[Dict]):
        """Load and process calendar data"""
        processor = CalendarDataProcessor()
        events = processor.parse_calendar_json(json_data)
        self.document_store.add_events(events)
        
    def process_query(self, query: str) -> Dict[str, Any]:
        """Process query and generate response"""
        try:
            # Analyze query
            query_info = self.query_processor.process_query(query)
            
            # Retrieve relevant documents
            documents = self.document_store.search(
                query=query,
                event_type=query_info["event_type"],
                semester=query_info["semester"],
                top_k=self.config.retriever.top_k
            )
            
            # Generate response
            response = self.response_generator.generate_response(
                query=query,
                documents=documents,
                query_info=query_info
            )
            
            return {
                "answer": response,
                "documents": documents,
                "query_info": query_info
            }
            
        except Exception as e:
            logger.error(f"Query processing failed: {str(e)}")
            return {
                "answer": "ขออภัย ไม่สามารถประมวลผลคำถามได้ในขณะนี้",
                "documents": [],
                "query_info": {}
            }
    
# def main():
#     """Main function for processing real calendar queries"""
#     try:
#         # Load API key
#         with open("key.txt", "r") as f:
#             openai_api_key = f.read().strip()
        
#         # Use create_default_config instead of direct PipelineConfig initialization
#         config = create_default_config(openai_api_key)
    
#         # Customize config for Thai academic calendar use case
#         config.localization.enable_thai_normalization = True
#         config.retriever.top_k = 5  # Adjust based on your needs
#         config.model.temperature = 0.3  # Lower temperature for more focused responses
        
#         # Initialize pipeline with enhanced config
#         pipeline = AcademicCalendarRAG(config)
        
#         # Load calendar data
#         with open("calendar.json", "r", encoding="utf-8") as f:
#             calendar_data = json.load(f)
#         pipeline.load_data(calendar_data)
        
#         # Real queries to process
#         queries = ["นิสิตที่เข้าศึกษาในภาคเรียนที่ 1 ปีการศึกษา 2567 สามารถถอนรายวิชาได้หรือไม่? เพราะเหตุใด?"]
        
#         print("Processing calendar queries...")
#         print("=" * 80)
        
#         for query in queries:
#             result = pipeline.process_query(query)
#             print(f"\nQuery: {query}")
#             print(f"Answer: {result['answer']}")
            
#             # # Print retrieved documents for verification
#             # print("\nRetrieved Documents:")
#             # for i, doc in enumerate(result['documents'], 1):
#             #     print(f"\nDocument {i}:")
#             #     print(doc.content)
            
#             # # Print query understanding info
#             # print("\nQuery Understanding:")
#             # for key, value in result['query_info'].items():
#             #     print(f"{key}: {value}")
                
#             print("=" * 80)
            
#     except Exception as e:
#         logger.error(f"Pipeline execution failed: {str(e)}")
#         raise

# if __name__ == "__main__":
#     main()