Update calendar_rag.py
Browse files- calendar_rag.py +920 -213
calendar_rag.py
CHANGED
|
@@ -1,98 +1,257 @@
|
|
| 1 |
-
from haystack import
|
| 2 |
from haystack.components.generators.openai import OpenAIGenerator
|
| 3 |
from haystack.components.builders import PromptBuilder
|
| 4 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
| 5 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
| 6 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 7 |
from haystack.utils import Secret
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
-
import
|
| 10 |
-
from
|
| 11 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import json
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
import re
|
|
|
|
| 16 |
|
| 17 |
# Setup logging
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
-
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
class LocalizationConfig:
|
| 23 |
-
"""Configuration for Thai language handling"""
|
| 24 |
-
thai_tokenizer_model: str = "thai-tokenizer"
|
| 25 |
-
enable_thai_normalization: bool = True
|
| 26 |
-
remove_thai_tones: bool = False
|
| 27 |
-
keep_english: bool = True
|
| 28 |
-
custom_stopwords: List[str] = field(default_factory=list)
|
| 29 |
-
custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)
|
| 30 |
-
|
| 31 |
-
@dataclass
|
| 32 |
-
class RetrieverConfig:
|
| 33 |
-
"""Configuration for document retrieval"""
|
| 34 |
-
top_k: int = 5
|
| 35 |
-
similarity_threshold: float = 0.7
|
| 36 |
-
filter_duplicates: bool = True
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
@dataclass
|
| 48 |
-
class
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def __post_init__(self):
|
| 55 |
-
if not self.model.openai_api_key:
|
| 56 |
-
raise ValueError("OpenAI API key is required")
|
| 57 |
|
| 58 |
class ThaiTextPreprocessor:
|
| 59 |
-
"""Thai text preprocessing
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if not text:
|
| 65 |
return text
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# Normalize whitespace
|
| 68 |
text = re.sub(r'\s+', ' ', text.strip())
|
| 69 |
|
| 70 |
-
# Normalize Thai numerals
|
| 71 |
thai_digits = '๐๑๒๓๔๕๖๗๘๙'
|
| 72 |
arabic_digits = '0123456789'
|
|
|
|
| 73 |
for thai, arabic in zip(thai_digits, arabic_digits):
|
| 74 |
text = text.replace(thai, arabic)
|
| 75 |
|
| 76 |
return text
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
class CalendarEvent:
|
| 79 |
-
"""
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
def to_searchable_text(self) -> str:
|
| 98 |
"""Convert event to searchable text format"""
|
|
@@ -100,125 +259,703 @@ class CalendarEvent:
|
|
| 100 |
ภาคการศึกษา: {self.semester}
|
| 101 |
ประเภท: {self.event_type}
|
| 102 |
วันที่: {self.date}
|
| 103 |
-
เวลา: {self.time
|
| 104 |
กิจกรรม: {self.activity}
|
| 105 |
หมวดหมู่: {self.section or '-'}
|
| 106 |
-
หมายเหตุ: {self.note
|
| 107 |
""".strip()
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
def __init__(self, config: PipelineConfig):
|
| 126 |
-
|
| 127 |
-
self.config = config
|
| 128 |
-
self.document_store = InMemoryDocumentStore()
|
| 129 |
self.embedder = SentenceTransformersDocumentEmbedder(
|
| 130 |
model=config.model.embedder_model
|
| 131 |
)
|
| 132 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
self.generator = OpenAIGenerator(
|
| 136 |
api_key=Secret.from_token(config.model.openai_api_key),
|
| 137 |
-
model=config.model.
|
| 138 |
-
temperature=config.model.temperature
|
| 139 |
)
|
| 140 |
-
|
| 141 |
-
self.query_analyzer = PromptBuilder(
|
| 142 |
template="""
|
| 143 |
-
|
| 144 |
-
|
| 145 |
|
| 146 |
-
|
| 147 |
-
1.
|
| 148 |
-
2.
|
| 149 |
-
3.
|
| 150 |
|
| 151 |
-
|
| 152 |
{
|
| 153 |
"event_type": "registration|deadline|examination|academic|holiday",
|
| 154 |
-
"semester": "
|
| 155 |
-
"key_terms": ["
|
|
|
|
| 156 |
}
|
| 157 |
-
"""
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
template="""
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
| 165 |
|
| 166 |
-
|
| 167 |
-
{% for doc in
|
| 168 |
---
|
| 169 |
{{doc.content}}
|
| 170 |
{% endfor %}
|
| 171 |
|
| 172 |
-
|
| 173 |
-
1. ตอบเป็นภาษาไทย
|
| 174 |
-
2. ระบุวันที่และข้อกำหนดให้ชัดเจน
|
| 175 |
-
3. รวมหมายเหตุหรือเงื่อนไขที่สำคัญ
|
| 176 |
-
"""
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
def load_data(self, calendar_data: List[Dict[str, Any]]) -> None:
|
| 180 |
-
"""Load calendar data into the system"""
|
| 181 |
-
documents = []
|
| 182 |
-
|
| 183 |
-
for entry in calendar_data:
|
| 184 |
-
# Create calendar event
|
| 185 |
-
event = CalendarEvent.from_dict(entry)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
)
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
# Store documents
|
| 202 |
-
self.document_store.write_documents(embedded_docs)
|
| 203 |
-
|
| 204 |
def process_query(self, query: str) -> Dict[str, Any]:
|
| 205 |
-
"""Process
|
| 206 |
try:
|
| 207 |
# Analyze query
|
| 208 |
-
query_info = self.
|
| 209 |
|
| 210 |
# Retrieve relevant documents
|
| 211 |
-
documents = self.
|
| 212 |
-
query,
|
| 213 |
-
event_type=query_info
|
| 214 |
-
semester=query_info
|
|
|
|
| 215 |
)
|
| 216 |
|
| 217 |
-
# Generate
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
return {
|
| 221 |
-
"answer":
|
| 222 |
"documents": documents,
|
| 223 |
"query_info": query_info
|
| 224 |
}
|
|
@@ -231,86 +968,56 @@ class CalendarRAG:
|
|
| 231 |
"query_info": {}
|
| 232 |
}
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
if not response or not response.get("replies"):
|
| 245 |
-
raise ValueError("Empty response from query analyzer")
|
| 246 |
-
|
| 247 |
-
analysis = json.loads(response["replies"][0])
|
| 248 |
-
analysis["original_query"] = query
|
| 249 |
-
|
| 250 |
-
return analysis
|
| 251 |
-
|
| 252 |
-
except Exception as e:
|
| 253 |
-
logger.error(f"Query analysis failed: {str(e)}")
|
| 254 |
-
return {
|
| 255 |
-
"original_query": query,
|
| 256 |
-
"event_type": None,
|
| 257 |
-
"semester": None,
|
| 258 |
-
"key_terms": []
|
| 259 |
-
}
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
"""Retrieve relevant documents"""
|
| 266 |
-
# Create retriever
|
| 267 |
-
retriever = InMemoryEmbeddingRetriever(
|
| 268 |
-
document_store=self.document_store,
|
| 269 |
-
top_k=self.config.retriever.top_k
|
| 270 |
-
)
|
| 271 |
|
| 272 |
-
#
|
| 273 |
-
|
| 274 |
-
embedded_query = self.embedder.run(documents=[query_doc])["documents"][0]
|
| 275 |
|
| 276 |
-
#
|
| 277 |
-
|
|
|
|
|
|
|
| 278 |
|
| 279 |
-
#
|
| 280 |
-
|
| 281 |
-
for doc in results:
|
| 282 |
-
if event_type and doc.meta['event_type'] != event_type:
|
| 283 |
-
continue
|
| 284 |
-
if semester and doc.meta['semester'] != semester:
|
| 285 |
-
continue
|
| 286 |
-
filtered_results.append(doc)
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
documents=documents
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
response = self.generator.run(prompt=prompt_result["prompt"])
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
model_config = ModelConfig(openai_api_key=api_key)
|
| 312 |
-
return PipelineConfig(
|
| 313 |
-
model=model_config,
|
| 314 |
-
retriever=RetrieverConfig(),
|
| 315 |
-
localization=LocalizationConfig()
|
| 316 |
-
)
|
|
|
|
| 1 |
+
from haystack import *
|
| 2 |
from haystack.components.generators.openai import OpenAIGenerator
|
| 3 |
from haystack.components.builders import PromptBuilder
|
| 4 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
| 5 |
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
| 6 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 7 |
from haystack.utils import Secret
|
| 8 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
| 9 |
from pathlib import Path
|
| 10 |
+
import hashlib
|
| 11 |
+
from datetime import *
|
| 12 |
+
from typing import *
|
| 13 |
+
import numpy as np
|
| 14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 15 |
+
from rouge_score import rouge_scorer
|
| 16 |
+
import pandas as pd
|
| 17 |
+
from dataclasses import *
|
| 18 |
import json
|
| 19 |
+
import logging
|
| 20 |
+
import os
|
| 21 |
import re
|
| 22 |
+
import pickle
|
| 23 |
|
| 24 |
# Setup logging
|
| 25 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 26 |
|
| 27 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
class OpenAIDateParser:
|
| 30 |
+
"""Uses OpenAI to parse complex Thai date formats"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, api_key: str, model: str = "gpt-4"):
|
| 33 |
+
self.generator = OpenAIGenerator(
|
| 34 |
+
api_key=Secret.from_token(api_key),
|
| 35 |
+
model=model
|
| 36 |
+
)
|
| 37 |
+
self.prompt_builder = PromptBuilder(
|
| 38 |
+
template="""
|
| 39 |
+
Parse the following Thai date range into a structured format:
|
| 40 |
+
Date: {{date}}
|
| 41 |
+
|
| 42 |
+
Return in JSON format:
|
| 43 |
+
{
|
| 44 |
+
"start_date": "YYYY-MM-DD",
|
| 45 |
+
"end_date": "YYYY-MM-DD" (if range),
|
| 46 |
+
"is_range": true/false
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
Notes:
|
| 50 |
+
- Convert Buddhist Era (BE) to CE
|
| 51 |
+
- Handle abbreviated Thai months
|
| 52 |
+
- Account for date ranges with dashes
|
| 53 |
+
- Return null for end_date if it's a single date
|
| 54 |
+
|
| 55 |
+
Example inputs and outputs:
|
| 56 |
+
Input: "จ 8 ก.ค. – จ 19 ส.ค. 67"
|
| 57 |
+
Output: {"start_date": "2024-07-08", "end_date": "2024-08-19", "is_range": true}
|
| 58 |
+
|
| 59 |
+
Input: "15 มกราคม 2567"
|
| 60 |
+
Output: {"start_date": "2024-01-15", "end_date": null, "is_range": false}
|
| 61 |
+
"""
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
async def parse_date(self, date_str: str) -> Dict[str, Union[str, bool]]:
|
| 65 |
+
"""Parse complex Thai date format using OpenAI"""
|
| 66 |
+
try:
|
| 67 |
+
# Build prompt
|
| 68 |
+
result = self.prompt_builder.run(date=date_str)
|
| 69 |
+
|
| 70 |
+
# Get OpenAI response
|
| 71 |
+
response = await self.generator.arun(prompt=result["prompt"])
|
| 72 |
+
|
| 73 |
+
if not response or not response.get("replies"):
|
| 74 |
+
raise ValueError("Empty response from OpenAI")
|
| 75 |
+
|
| 76 |
+
# Parse JSON response
|
| 77 |
+
parsed = json.loads(response["replies"][0])
|
| 78 |
+
|
| 79 |
+
# Validate the parsed dates
|
| 80 |
+
for date_field in ['start_date', 'end_date']:
|
| 81 |
+
if parsed.get(date_field):
|
| 82 |
+
datetime.strptime(parsed[date_field], '%Y-%m-%d')
|
| 83 |
+
|
| 84 |
+
return parsed
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.error(f"OpenAI date parsing failed for '{date_str}': {str(e)}")
|
| 88 |
+
raise ValueError(f"Could not parse date: {date_str}")
|
| 89 |
|
| 90 |
@dataclass
|
| 91 |
+
class ValidationResult:
|
| 92 |
+
"""Stores the result of a validation check"""
|
| 93 |
+
is_valid: bool
|
| 94 |
+
errors: List[str]
|
| 95 |
+
warnings: List[str]
|
| 96 |
+
normalized_data: Dict[str, str]
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
class ThaiTextPreprocessor:
|
| 99 |
+
"""Handles Thai text preprocessing and normalization"""
|
| 100 |
|
| 101 |
+
# Thai character normalization mappings
|
| 102 |
+
CHAR_MAP = {
|
| 103 |
+
'ํา': 'ำ', # Normalize sara am
|
| 104 |
+
'์': '', # Remove yamakkan
|
| 105 |
+
'–': '-', # Normalize dashes
|
| 106 |
+
'—': '-',
|
| 107 |
+
'٫': ',', # Normalize separators
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
@classmethod
|
| 111 |
+
def normalize_thai_text(cls, text: str) -> str:
|
| 112 |
+
"""Normalize Thai text by applying character mappings and spacing rules"""
|
| 113 |
if not text:
|
| 114 |
return text
|
| 115 |
|
| 116 |
+
# Apply character mappings
|
| 117 |
+
for old, new in cls.CHAR_MAP.items():
|
| 118 |
+
text = text.replace(old, new)
|
| 119 |
+
|
| 120 |
# Normalize whitespace
|
| 121 |
text = re.sub(r'\s+', ' ', text.strip())
|
| 122 |
|
| 123 |
+
# Normalize Thai numerals if present
|
| 124 |
thai_digits = '๐๑๒๓๔๕๖๗๘๙'
|
| 125 |
arabic_digits = '0123456789'
|
| 126 |
+
|
| 127 |
for thai, arabic in zip(thai_digits, arabic_digits):
|
| 128 |
text = text.replace(thai, arabic)
|
| 129 |
|
| 130 |
return text
|
| 131 |
|
| 132 |
+
class CalendarEventValidator:
|
| 133 |
+
"""Validates and preprocesses calendar events"""
|
| 134 |
+
|
| 135 |
+
def __init__(self, openai_api_key: str):
|
| 136 |
+
self.preprocessor = ThaiTextPreprocessor()
|
| 137 |
+
self.date_parser = OpenAIDateParser(api_key=openai_api_key)
|
| 138 |
+
|
| 139 |
+
async def validate_event(self, event: 'CalendarEvent') -> ValidationResult:
|
| 140 |
+
"""Validate a calendar event and return validation results"""
|
| 141 |
+
errors = []
|
| 142 |
+
warnings = []
|
| 143 |
+
normalized_data = {}
|
| 144 |
+
|
| 145 |
+
# Validate and normalize date using OpenAI
|
| 146 |
+
if event.date:
|
| 147 |
+
try:
|
| 148 |
+
parsed_date = await self.date_parser.parse_date(event.date)
|
| 149 |
+
normalized_data['date'] = parsed_date['start_date']
|
| 150 |
+
|
| 151 |
+
# If it's a date range, store it in the note
|
| 152 |
+
if parsed_date['is_range'] and parsed_date['end_date']:
|
| 153 |
+
range_note = f"ถึงวันที่ {parsed_date['end_date']}"
|
| 154 |
+
if event.note:
|
| 155 |
+
normalized_data['note'] = f"{event.note}; {range_note}"
|
| 156 |
+
else:
|
| 157 |
+
normalized_data['note'] = range_note
|
| 158 |
+
|
| 159 |
+
except ValueError as e:
|
| 160 |
+
errors.append(f"Invalid date format: {event.date}")
|
| 161 |
+
else:
|
| 162 |
+
errors.append("Date is required")
|
| 163 |
+
|
| 164 |
+
# Validate time format if provided
|
| 165 |
+
if event.time:
|
| 166 |
+
time_pattern = r'^([01]?[0-9]|2[0-3]):([0-5][0-9])$'
|
| 167 |
+
if not re.match(time_pattern, event.time):
|
| 168 |
+
errors.append(f"Invalid time format: {event.time}")
|
| 169 |
+
normalized_data['time'] = event.time
|
| 170 |
+
|
| 171 |
+
# Validate and normalize activity
|
| 172 |
+
if event.activity:
|
| 173 |
+
normalized_activity = self.preprocessor.normalize_thai_text(event.activity)
|
| 174 |
+
if len(normalized_activity) < 3:
|
| 175 |
+
warnings.append("Activity description is very short")
|
| 176 |
+
normalized_data['activity'] = normalized_activity
|
| 177 |
+
else:
|
| 178 |
+
errors.append("Activity is required")
|
| 179 |
+
|
| 180 |
+
# Validate semester
|
| 181 |
+
valid_semesters = {'ภาคต้น', 'ภาคปลาย', 'ภาคฤดูร้อน'}
|
| 182 |
+
if event.semester:
|
| 183 |
+
normalized_semester = self.preprocessor.normalize_thai_text(event.semester)
|
| 184 |
+
if normalized_semester not in valid_semesters:
|
| 185 |
+
warnings.append(f"Unusual semester value: {event.semester}")
|
| 186 |
+
normalized_data['semester'] = normalized_semester
|
| 187 |
+
else:
|
| 188 |
+
errors.append("Semester is required")
|
| 189 |
+
|
| 190 |
+
# Validate event type
|
| 191 |
+
valid_types = {'registration', 'deadline', 'examination', 'academic', 'holiday'}
|
| 192 |
+
if event.event_type not in valid_types:
|
| 193 |
+
errors.append(f"Invalid event type: {event.event_type}")
|
| 194 |
+
normalized_data['event_type'] = event.event_type
|
| 195 |
+
|
| 196 |
+
# Normalize note if present and not already set by date range
|
| 197 |
+
if event.note and 'note' not in normalized_data:
|
| 198 |
+
normalized_data['note'] = self.preprocessor.normalize_thai_text(event.note)
|
| 199 |
+
|
| 200 |
+
# Normalize section if present
|
| 201 |
+
if event.section:
|
| 202 |
+
normalized_data['section'] = self.preprocessor.normalize_thai_text(event.section)
|
| 203 |
+
|
| 204 |
+
return ValidationResult(
|
| 205 |
+
is_valid=len(errors) == 0,
|
| 206 |
+
errors=errors,
|
| 207 |
+
warnings=warnings,
|
| 208 |
+
normalized_data=normalized_data
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Update CalendarEvent class to include async validation
|
| 212 |
+
@dataclass
|
| 213 |
class CalendarEvent:
|
| 214 |
+
"""Structured representation of a calendar event with validation"""
|
| 215 |
+
|
| 216 |
+
@staticmethod
|
| 217 |
+
def classify_event_type(activity: str) -> str:
|
| 218 |
+
"""Classify event type based on activity description"""
|
| 219 |
+
activity_lower = activity.lower()
|
| 220 |
+
|
| 221 |
+
keywords = {
|
| 222 |
+
'registration': ['ลงทะเบียน', 'ชําระเงิน', 'ค่าธรรมเนียม', 'เปิดเรียน'],
|
| 223 |
+
'deadline': ['วันสุดท้าย', 'กําหนด', 'ภายใน', 'ต้องส่ง'],
|
| 224 |
+
'examination': ['สอบ', 'ปริญญานิพนธ์', 'วิทยานิพนธ์', 'สอบปากเปล่า'],
|
| 225 |
+
'holiday': ['วันหยุด', 'ชดเชย', 'เทศกาล'],
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
for event_type, terms in keywords.items():
|
| 229 |
+
if any(term in activity_lower for term in terms):
|
| 230 |
+
return event_type
|
| 231 |
+
return 'academic'
|
| 232 |
+
date: str
|
| 233 |
+
time: str
|
| 234 |
+
activity: str
|
| 235 |
+
note: str
|
| 236 |
+
semester: str
|
| 237 |
+
event_type: str
|
| 238 |
+
section: Optional[str] = None
|
| 239 |
+
|
| 240 |
+
async def initialize(self, openai_api_key: str):
|
| 241 |
+
"""Asynchronously validate and normalize the event"""
|
| 242 |
+
validator = CalendarEventValidator(openai_api_key)
|
| 243 |
+
result = await validator.validate_event(self)
|
| 244 |
+
|
| 245 |
+
if not result.is_valid:
|
| 246 |
+
raise ValueError(f"Invalid calendar event: {', '.join(result.errors)}")
|
| 247 |
+
|
| 248 |
+
# Update with normalized data
|
| 249 |
+
for field, value in result.normalized_data.items():
|
| 250 |
+
setattr(self, field, value)
|
| 251 |
+
|
| 252 |
+
# Log any warnings
|
| 253 |
+
if result.warnings:
|
| 254 |
+
logger.warning(f"Calendar event warnings: {', '.join(result.warnings)}")
|
| 255 |
|
| 256 |
def to_searchable_text(self) -> str:
|
| 257 |
"""Convert event to searchable text format"""
|
|
|
|
| 259 |
ภาคการศึกษา: {self.semester}
|
| 260 |
ประเภท: {self.event_type}
|
| 261 |
วันที่: {self.date}
|
| 262 |
+
เวลา: {self.time}
|
| 263 |
กิจกรรม: {self.activity}
|
| 264 |
หมวดหมู่: {self.section or '-'}
|
| 265 |
+
หมายเหตุ: {self.note}
|
| 266 |
""".strip()
|
| 267 |
|
| 268 |
+
class CacheManager:
|
| 269 |
+
"""Manages caching for different components of the RAG pipeline"""
|
| 270 |
+
|
| 271 |
+
def __init__(self, cache_dir: Path, ttl: int = 3600):
|
| 272 |
+
"""
|
| 273 |
+
Initialize CacheManager
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
cache_dir: Directory to store cache files
|
| 277 |
+
ttl: Time-to-live in seconds for cache entries (default: 1 hour)
|
| 278 |
+
"""
|
| 279 |
+
self.cache_dir = cache_dir
|
| 280 |
+
self.ttl = ttl
|
| 281 |
+
self.embeddings_cache = self._load_cache("embeddings")
|
| 282 |
+
self.query_cache = self._load_cache("queries")
|
| 283 |
+
self.document_cache = self._load_cache("documents")
|
| 284 |
+
|
| 285 |
+
def _generate_key(self, data: Union[str, Dict, Any]) -> str:
|
| 286 |
+
"""Generate a unique cache key"""
|
| 287 |
+
if isinstance(data, str):
|
| 288 |
+
content = data.encode('utf-8')
|
| 289 |
+
else:
|
| 290 |
+
content = json.dumps(data, sort_keys=True).encode('utf-8')
|
| 291 |
+
return hashlib.md5(content).hexdigest()
|
| 292 |
+
|
| 293 |
+
def _load_cache(self, cache_type: str) -> Dict:
|
| 294 |
+
"""Load cache from disk"""
|
| 295 |
+
cache_path = self.cache_dir / f"{cache_type}_cache.pkl"
|
| 296 |
+
if cache_path.exists():
|
| 297 |
+
try:
|
| 298 |
+
with open(cache_path, 'rb') as f:
|
| 299 |
+
cache = pickle.load(f)
|
| 300 |
+
# Clean expired entries
|
| 301 |
+
self._clean_expired_entries(cache)
|
| 302 |
+
return cache
|
| 303 |
+
except Exception as e:
|
| 304 |
+
logger.warning(f"Failed to load {cache_type} cache: {e}")
|
| 305 |
+
return {}
|
| 306 |
+
return {}
|
| 307 |
+
|
| 308 |
+
def _save_cache(self, cache_type: str, cache_data: Dict):
|
| 309 |
+
"""Save cache to disk"""
|
| 310 |
+
cache_path = self.cache_dir / f"{cache_type}_cache.pkl"
|
| 311 |
+
try:
|
| 312 |
+
with open(cache_path, 'wb') as f:
|
| 313 |
+
pickle.dump(cache_data, f)
|
| 314 |
+
except Exception as e:
|
| 315 |
+
logger.error(f"Failed to save {cache_type} cache: {e}")
|
| 316 |
+
|
| 317 |
+
def _clean_expired_entries(self, cache: Dict):
|
| 318 |
+
"""Remove expired cache entries"""
|
| 319 |
+
current_time = datetime.now()
|
| 320 |
+
expired_keys = [
|
| 321 |
+
key for key, (_, timestamp) in cache.items()
|
| 322 |
+
if current_time - timestamp > timedelta(seconds=self.ttl)
|
| 323 |
+
]
|
| 324 |
+
for key in expired_keys:
|
| 325 |
+
del cache[key]
|
| 326 |
+
|
| 327 |
+
def get_embedding_cache(self, text: str) -> Optional[Any]:
|
| 328 |
+
"""Get cached embedding for text"""
|
| 329 |
+
key = self._generate_key(text)
|
| 330 |
+
if key in self.embeddings_cache:
|
| 331 |
+
embedding, timestamp = self.embeddings_cache[key]
|
| 332 |
+
if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
|
| 333 |
+
return embedding
|
| 334 |
+
return None
|
| 335 |
+
|
| 336 |
+
def set_embedding_cache(self, text: str, embedding: Any):
|
| 337 |
+
"""Cache embedding for text"""
|
| 338 |
+
key = self._generate_key(text)
|
| 339 |
+
self.embeddings_cache[key] = (embedding, datetime.now())
|
| 340 |
+
self._save_cache("embeddings", self.embeddings_cache)
|
| 341 |
+
|
| 342 |
+
def get_query_cache(self, query: str) -> Optional[Dict]:
|
| 343 |
+
"""Get cached query results"""
|
| 344 |
+
key = self._generate_key(query)
|
| 345 |
+
if key in self.query_cache:
|
| 346 |
+
result, timestamp = self.query_cache[key]
|
| 347 |
+
if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
|
| 348 |
+
return result
|
| 349 |
+
return None
|
| 350 |
+
|
| 351 |
+
def set_query_cache(self, query: str, result: Dict):
|
| 352 |
+
"""Cache query results"""
|
| 353 |
+
key = self._generate_key(query)
|
| 354 |
+
self.query_cache[key] = (result, datetime.now())
|
| 355 |
+
self._save_cache("queries", self.query_cache)
|
| 356 |
+
|
| 357 |
+
def get_document_cache(self, doc_id: str) -> Optional[Any]:
|
| 358 |
+
"""Get cached document"""
|
| 359 |
+
if doc_id in self.document_cache:
|
| 360 |
+
doc, timestamp = self.document_cache[doc_id]
|
| 361 |
+
if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
|
| 362 |
+
return doc
|
| 363 |
+
return None
|
| 364 |
+
|
| 365 |
+
def set_document_cache(self, doc_id: str, document: Any):
|
| 366 |
+
"""Cache document"""
|
| 367 |
+
self.document_cache[doc_id] = (document, datetime.now())
|
| 368 |
+
self._save_cache("documents", self.document_cache)
|
| 369 |
+
|
| 370 |
+
def clear_cache(self, cache_type: Optional[str] = None):
|
| 371 |
+
"""Clear specific or all caches"""
|
| 372 |
+
if cache_type == "embeddings":
|
| 373 |
+
self.embeddings_cache.clear()
|
| 374 |
+
self._save_cache("embeddings", self.embeddings_cache)
|
| 375 |
+
elif cache_type == "queries":
|
| 376 |
+
self.query_cache.clear()
|
| 377 |
+
self._save_cache("queries", self.query_cache)
|
| 378 |
+
elif cache_type == "documents":
|
| 379 |
+
self.document_cache.clear()
|
| 380 |
+
self._save_cache("documents", self.document_cache)
|
| 381 |
+
else:
|
| 382 |
+
self.embeddings_cache.clear()
|
| 383 |
+
self.query_cache.clear()
|
| 384 |
+
self.document_cache.clear()
|
| 385 |
+
for cache_type in ["embeddings", "queries", "documents"]:
|
| 386 |
+
self._save_cache(cache_type, {})
|
| 387 |
+
|
| 388 |
+
@dataclass
|
| 389 |
+
class ModelConfig:
|
| 390 |
+
"""Configuration for language models and embeddings"""
|
| 391 |
+
openai_api_key: str
|
| 392 |
+
embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 393 |
+
openai_model: str = "gpt-4o"
|
| 394 |
+
temperature: float = 0.7
|
| 395 |
+
max_tokens: int = 2000
|
| 396 |
+
top_p: float = 0.95
|
| 397 |
+
frequency_penalty: float = 0.0
|
| 398 |
+
presence_penalty: float = 0.0
|
| 399 |
+
|
| 400 |
+
@dataclass
|
| 401 |
+
class RetrieverConfig:
|
| 402 |
+
"""Configuration for document retrieval"""
|
| 403 |
+
top_k: int = 5
|
| 404 |
+
similarity_threshold: float = 0.7
|
| 405 |
+
reranking_enabled: bool = False
|
| 406 |
+
reranking_model: Optional[str] = None
|
| 407 |
+
filter_duplicates: bool = True
|
| 408 |
+
min_document_length: int = 10
|
| 409 |
+
|
| 410 |
+
@dataclass
|
| 411 |
+
class CacheConfig:
|
| 412 |
+
"""Configuration for caching behavior"""
|
| 413 |
+
enabled: bool = True
|
| 414 |
+
cache_dir: Path = field(default_factory=lambda: Path("./cache"))
|
| 415 |
+
embeddings_cache_ttl: int = 86400 # 24 hours
|
| 416 |
+
query_cache_ttl: int = 3600 # 1 hour
|
| 417 |
+
max_cache_size: int = 1000 # entries
|
| 418 |
+
cache_cleanup_interval: int = 3600 # 1 hour
|
| 419 |
+
|
| 420 |
+
@dataclass
|
| 421 |
+
class ProcessingConfig:
|
| 422 |
+
"""Configuration for data processing"""
|
| 423 |
+
batch_size: int = 32
|
| 424 |
+
max_retries: int = 3
|
| 425 |
+
timeout: int = 30
|
| 426 |
+
max_concurrent_requests: int = 5
|
| 427 |
+
chunk_size: int = 512
|
| 428 |
+
chunk_overlap: int = 50
|
| 429 |
+
preprocessing_workers: int = 4
|
| 430 |
+
|
| 431 |
+
@dataclass
|
| 432 |
+
class MonitoringConfig:
|
| 433 |
+
"""Configuration for monitoring and logging"""
|
| 434 |
+
enable_monitoring: bool = True
|
| 435 |
+
log_level: str = "INFO"
|
| 436 |
+
metrics_enabled: bool = True
|
| 437 |
+
trace_enabled: bool = True
|
| 438 |
+
performance_logging: bool = True
|
| 439 |
+
slow_query_threshold: float = 5.0 # seconds
|
| 440 |
+
health_check_interval: int = 300 # 5 minutes
|
| 441 |
+
|
| 442 |
+
@dataclass
|
| 443 |
+
class LocalizationConfig:
|
| 444 |
+
"""Configuration for Thai language handling"""
|
| 445 |
+
thai_tokenizer_model: str = "thai-tokenizer"
|
| 446 |
+
enable_thai_normalization: bool = True
|
| 447 |
+
remove_thai_tones: bool = False
|
| 448 |
+
keep_english: bool = True
|
| 449 |
+
custom_stopwords: List[str] = field(default_factory=list)
|
| 450 |
+
custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)
|
| 451 |
+
|
| 452 |
+
@dataclass
|
| 453 |
+
class PipelineConfig:
|
| 454 |
+
"""Main configuration for the RAG pipeline"""
|
| 455 |
+
# Model configurations
|
| 456 |
+
model: ModelConfig
|
| 457 |
+
|
| 458 |
+
# Retriever settings
|
| 459 |
+
retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
|
| 460 |
+
|
| 461 |
+
# Cache settings
|
| 462 |
+
cache: CacheConfig = field(default_factory=CacheConfig)
|
| 463 |
+
|
| 464 |
+
# Processing settings
|
| 465 |
+
processing: ProcessingConfig = field(default_factory=ProcessingConfig)
|
| 466 |
+
|
| 467 |
+
# Monitoring settings
|
| 468 |
+
monitoring: MonitoringConfig = field(default_factory=MonitoringConfig)
|
| 469 |
+
|
| 470 |
+
# Localization settings
|
| 471 |
+
localization: LocalizationConfig = field(default_factory=LocalizationConfig)
|
| 472 |
+
|
| 473 |
+
# Rate limiting
|
| 474 |
+
rate_limit_enabled: bool = True
|
| 475 |
+
requests_per_minute: int = 60
|
| 476 |
+
|
| 477 |
+
# System settings
|
| 478 |
+
debug_mode: bool = False
|
| 479 |
+
development_mode: bool = False
|
| 480 |
+
|
| 481 |
+
def __post_init__(self):
|
| 482 |
+
"""Validate configuration and create necessary directories"""
|
| 483 |
+
if not self.model.openai_api_key:
|
| 484 |
+
raise ValueError("OpenAI API key is required")
|
| 485 |
+
|
| 486 |
+
if self.cache.enabled:
|
| 487 |
+
self.cache.cache_dir.mkdir(parents=True, exist_ok=True)
|
| 488 |
+
|
| 489 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 490 |
+
"""Convert configuration to dictionary format"""
|
| 491 |
+
return {
|
| 492 |
+
"model_config": {
|
| 493 |
+
"embedder_model": self.model.embedder_model,
|
| 494 |
+
"openai_model": self.model.openai_model,
|
| 495 |
+
"temperature": self.model.temperature,
|
| 496 |
+
# Add other relevant fields
|
| 497 |
+
},
|
| 498 |
+
"retriever_config": {
|
| 499 |
+
"top_k": self.retriever.top_k,
|
| 500 |
+
"similarity_threshold": self.retriever.similarity_threshold,
|
| 501 |
+
# Add other relevant fields
|
| 502 |
+
},
|
| 503 |
+
# Add other configuration sections
|
| 504 |
+
}
|
| 505 |
+
|
| 506 |
+
@classmethod
|
| 507 |
+
def from_dict(cls, config_dict: Dict[str, Any]) -> 'PipelineConfig':
|
| 508 |
+
"""Create configuration from dictionary"""
|
| 509 |
+
model_config = ModelConfig(**config_dict.get("model_config", {}))
|
| 510 |
+
retriever_config = RetrieverConfig(**config_dict.get("retriever_config", {}))
|
| 511 |
+
# Create other config objects
|
| 512 |
+
|
| 513 |
+
return cls(
|
| 514 |
+
model=model_config,
|
| 515 |
+
retriever=retriever_config,
|
| 516 |
+
# Add other configuration objects
|
| 517 |
)
|
| 518 |
|
| 519 |
+
def create_default_config(api_key: str) -> PipelineConfig:
|
| 520 |
+
"""Create a default configuration with the given API key"""
|
| 521 |
+
model_config = ModelConfig(
|
| 522 |
+
openai_api_key=api_key,
|
| 523 |
+
embedder_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 524 |
+
)
|
| 525 |
+
return PipelineConfig(
|
| 526 |
+
model=model_config,
|
| 527 |
+
retriever=RetrieverConfig(),
|
| 528 |
+
cache=CacheConfig(),
|
| 529 |
+
processing=ProcessingConfig(),
|
| 530 |
+
monitoring=MonitoringConfig(),
|
| 531 |
+
localization=LocalizationConfig()
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
class CalendarDataProcessor:
|
| 535 |
+
"""Process and structure calendar data"""
|
| 536 |
+
|
| 537 |
+
@staticmethod
|
| 538 |
+
def parse_calendar_json(json_data: List[Dict]) -> List[CalendarEvent]:
|
| 539 |
+
events = []
|
| 540 |
+
|
| 541 |
+
for semester_data in json_data:
|
| 542 |
+
semester = semester_data['education']
|
| 543 |
+
|
| 544 |
+
# Process regular schedule events
|
| 545 |
+
for event in semester_data.get('schedule', []):
|
| 546 |
+
# Check if this is a regular event or a section with details
|
| 547 |
+
if 'section' in event and 'details' in event:
|
| 548 |
+
# This is a section with details
|
| 549 |
+
section = event['section']
|
| 550 |
+
for detail in event['details']:
|
| 551 |
+
# Extract semester-specific information if available
|
| 552 |
+
if 'ภาคต้น' in detail and 'ภาคปลาย' in detail:
|
| 553 |
+
# Handle both semesters
|
| 554 |
+
semesters = ['ภาคต้น', 'ภาคปลาย']
|
| 555 |
+
for sem in semesters:
|
| 556 |
+
events.append(CalendarEvent(
|
| 557 |
+
date=detail.get(sem, ''),
|
| 558 |
+
time='',
|
| 559 |
+
activity=detail.get('title', ''),
|
| 560 |
+
note=section,
|
| 561 |
+
semester=sem,
|
| 562 |
+
event_type='deadline',
|
| 563 |
+
section=section
|
| 564 |
+
))
|
| 565 |
+
else:
|
| 566 |
+
# Single event
|
| 567 |
+
events.append(CalendarEvent(
|
| 568 |
+
date=detail.get('date', ''),
|
| 569 |
+
time='',
|
| 570 |
+
activity=detail.get('title', ''),
|
| 571 |
+
note=section,
|
| 572 |
+
semester=semester,
|
| 573 |
+
event_type='deadline',
|
| 574 |
+
section=section
|
| 575 |
+
))
|
| 576 |
+
else:
|
| 577 |
+
# This is a regular event
|
| 578 |
+
event_type = CalendarEvent.classify_event_type(event.get('activity', ''))
|
| 579 |
+
events.append(CalendarEvent(
|
| 580 |
+
date=event.get('date', ''),
|
| 581 |
+
time=event.get('time', ''),
|
| 582 |
+
activity=event.get('activity', ''),
|
| 583 |
+
note=event.get('note', ''),
|
| 584 |
+
semester=semester,
|
| 585 |
+
event_type=event_type
|
| 586 |
+
))
|
| 587 |
+
|
| 588 |
+
return events
|
| 589 |
+
|
| 590 |
+
# Update the EnhancedDocumentStore class to use caching
|
| 591 |
+
class EnhancedDocumentStore:
|
| 592 |
+
"""Enhanced document store with caching capabilities"""
|
| 593 |
|
| 594 |
def __init__(self, config: PipelineConfig):
|
| 595 |
+
self.store = InMemoryDocumentStore()
|
|
|
|
|
|
|
| 596 |
self.embedder = SentenceTransformersDocumentEmbedder(
|
| 597 |
model=config.model.embedder_model
|
| 598 |
)
|
| 599 |
+
self.cache_manager = CacheManager(
|
| 600 |
+
cache_dir=config.cache.cache_dir,
|
| 601 |
+
ttl=config.cache.embeddings_cache_ttl
|
| 602 |
+
)
|
| 603 |
|
| 604 |
+
# Configure for Thai text
|
| 605 |
+
self.embedder.warm_up()
|
| 606 |
+
|
| 607 |
+
self.events = []
|
| 608 |
+
self.event_type_index = {}
|
| 609 |
+
self.semester_index = {}
|
| 610 |
+
|
| 611 |
+
def _compute_embedding(self, text: str) -> Any:
|
| 612 |
+
"""Compute embedding with caching"""
|
| 613 |
+
cached_embedding = self.cache_manager.get_embedding_cache(text)
|
| 614 |
+
if cached_embedding is not None:
|
| 615 |
+
return cached_embedding
|
| 616 |
+
|
| 617 |
+
doc = Document(content=text)
|
| 618 |
+
embedding = self.embedder.run(documents=[doc])["documents"][0].embedding
|
| 619 |
+
self.cache_manager.set_embedding_cache(text, embedding)
|
| 620 |
+
return embedding
|
| 621 |
+
|
| 622 |
+
def add_events(self, events: List[CalendarEvent]):
|
| 623 |
+
"""Add events with caching"""
|
| 624 |
+
documents = []
|
| 625 |
+
|
| 626 |
+
for event in events:
|
| 627 |
+
# Store event
|
| 628 |
+
self.events.append(event)
|
| 629 |
+
event_idx = len(self.events) - 1
|
| 630 |
+
|
| 631 |
+
# Update indices
|
| 632 |
+
if event.event_type not in self.event_type_index:
|
| 633 |
+
self.event_type_index[event.event_type] = []
|
| 634 |
+
self.event_type_index[event.event_type].append(event_idx)
|
| 635 |
+
|
| 636 |
+
if event.semester not in self.semester_index:
|
| 637 |
+
self.semester_index[event.semester] = []
|
| 638 |
+
self.semester_index[event.semester].append(event_idx)
|
| 639 |
+
|
| 640 |
+
# Create document with cached embedding
|
| 641 |
+
text = event.to_searchable_text()
|
| 642 |
+
embedding = self._compute_embedding(text)
|
| 643 |
+
|
| 644 |
+
doc = Document(
|
| 645 |
+
content=text,
|
| 646 |
+
embedding=embedding,
|
| 647 |
+
meta={
|
| 648 |
+
'event_type': event.event_type,
|
| 649 |
+
'semester': event.semester,
|
| 650 |
+
'date': event.date
|
| 651 |
+
}
|
| 652 |
+
)
|
| 653 |
+
documents.append(doc)
|
| 654 |
+
|
| 655 |
+
# Cache document
|
| 656 |
+
self.cache_manager.set_document_cache(str(event_idx), doc)
|
| 657 |
+
|
| 658 |
+
# Store documents
|
| 659 |
+
self.store.write_documents(documents)
|
| 660 |
+
|
| 661 |
+
def search(self,
|
| 662 |
+
query: str,
|
| 663 |
+
event_type: Optional[str] = None,
|
| 664 |
+
semester: Optional[str] = None,
|
| 665 |
+
top_k: int = 5) -> List[Document]:
|
| 666 |
+
"""Search with query caching"""
|
| 667 |
+
# Check cache first
|
| 668 |
+
cache_key = json.dumps({
|
| 669 |
+
'query': query,
|
| 670 |
+
'event_type': event_type,
|
| 671 |
+
'semester': semester,
|
| 672 |
+
'top_k': top_k
|
| 673 |
+
})
|
| 674 |
+
cached_results = self.cache_manager.get_query_cache(cache_key)
|
| 675 |
+
if cached_results is not None:
|
| 676 |
+
return cached_results
|
| 677 |
+
|
| 678 |
+
# Compute query embedding
|
| 679 |
+
query_embedding = self._compute_embedding(query)
|
| 680 |
+
|
| 681 |
+
# Perform search
|
| 682 |
+
retriever = InMemoryEmbeddingRetriever(
|
| 683 |
+
document_store=self.store,
|
| 684 |
+
top_k=top_k * 2
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
results = retriever.run(query_embedding=query_embedding)["documents"]
|
| 688 |
+
|
| 689 |
+
# Filter results
|
| 690 |
+
filtered_results = []
|
| 691 |
+
for doc in results:
|
| 692 |
+
if event_type and doc.meta['event_type'] != event_type:
|
| 693 |
+
continue
|
| 694 |
+
if semester and doc.meta['semester'] != semester:
|
| 695 |
+
continue
|
| 696 |
+
filtered_results.append(doc)
|
| 697 |
+
|
| 698 |
+
final_results = filtered_results[:top_k]
|
| 699 |
+
|
| 700 |
+
# Cache results
|
| 701 |
+
self.cache_manager.set_query_cache(cache_key, final_results)
|
| 702 |
+
|
| 703 |
+
return final_results
|
| 704 |
+
|
| 705 |
+
class AdvancedQueryProcessor:
|
| 706 |
+
"""Process queries with better understanding"""
|
| 707 |
+
|
| 708 |
+
def __init__(self, config: PipelineConfig):
|
| 709 |
self.generator = OpenAIGenerator(
|
| 710 |
api_key=Secret.from_token(config.model.openai_api_key),
|
| 711 |
+
model=config.model.openai_model
|
|
|
|
| 712 |
)
|
| 713 |
+
self.prompt_builder = PromptBuilder(
|
|
|
|
| 714 |
template="""
|
| 715 |
+
Analyze this academic calendar query (in Thai):
|
| 716 |
+
Query: {{query}}
|
| 717 |
|
| 718 |
+
Determine:
|
| 719 |
+
1. The type of information being requested
|
| 720 |
+
2. Any specific semester mentioned
|
| 721 |
+
3. Key terms to look for
|
| 722 |
|
| 723 |
+
Return as JSON:
|
| 724 |
{
|
| 725 |
"event_type": "registration|deadline|examination|academic|holiday",
|
| 726 |
+
"semester": "term mentioned or null",
|
| 727 |
+
"key_terms": ["up to 3 most important terms"],
|
| 728 |
+
"response_format": "list|single|detailed"
|
| 729 |
}
|
| 730 |
+
""")
|
| 731 |
+
|
| 732 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
| 733 |
+
"""Process and analyze query"""
|
| 734 |
+
try:
|
| 735 |
+
# Get analysis
|
| 736 |
+
result = self.prompt_builder.run(query=query)
|
| 737 |
+
response = self.generator.run(prompt=result["prompt"])
|
| 738 |
+
|
| 739 |
+
# Add validation for empty response
|
| 740 |
+
if not response or not response.get("replies") or not response["replies"][0]:
|
| 741 |
+
logger.warning("Received empty response from generator")
|
| 742 |
+
return self._get_default_analysis(query)
|
| 743 |
+
|
| 744 |
+
try:
|
| 745 |
+
# Parse response with error handling
|
| 746 |
+
analysis = json.loads(response["replies"][0])
|
| 747 |
+
|
| 748 |
+
# Validate required fields
|
| 749 |
+
required_fields = ["event_type", "semester", "key_terms", "response_format"]
|
| 750 |
+
for field in required_fields:
|
| 751 |
+
if field not in analysis:
|
| 752 |
+
logger.warning(f"Missing required field: {field}")
|
| 753 |
+
return self._get_default_analysis(query)
|
| 754 |
+
|
| 755 |
+
return {
|
| 756 |
+
"original_query": query,
|
| 757 |
+
**analysis
|
| 758 |
+
}
|
| 759 |
+
|
| 760 |
+
except json.JSONDecodeError as je:
|
| 761 |
+
logger.error(f"JSON parsing failed: {str(je)}")
|
| 762 |
+
return self._get_default_analysis(query)
|
| 763 |
+
|
| 764 |
+
except Exception as e:
|
| 765 |
+
logger.error(f"Query processing failed: {str(e)}")
|
| 766 |
+
return self._get_default_analysis(query)
|
| 767 |
+
|
| 768 |
+
def _get_default_analysis(self, query: str) -> Dict[str, Any]:
|
| 769 |
+
"""Return default analysis when processing fails"""
|
| 770 |
+
logger.info("Returning default analysis")
|
| 771 |
+
return {
|
| 772 |
+
"original_query": query,
|
| 773 |
+
"event_type": None,
|
| 774 |
+
"semester": None,
|
| 775 |
+
"key_terms": [],
|
| 776 |
+
"response_format": "detailed"
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
@dataclass
|
| 780 |
+
class RateLimitConfig:
|
| 781 |
+
"""Configuration for rate limiting"""
|
| 782 |
+
requests_per_minute: int = 60
|
| 783 |
+
max_retries: int = 3
|
| 784 |
+
base_delay: float = 1.0
|
| 785 |
+
max_delay: float = 60.0
|
| 786 |
+
timeout: float = 30.0
|
| 787 |
+
concurrent_requests: int = 5
|
| 788 |
+
|
| 789 |
+
class APIError(Exception):
|
| 790 |
+
"""Base class for API related errors"""
|
| 791 |
+
def __init__(self, message: str, status_code: Optional[int] = None, response: Optional[Dict] = None):
|
| 792 |
+
super().__init__(message)
|
| 793 |
+
self.status_code = status_code
|
| 794 |
+
self.response = response
|
| 795 |
+
|
| 796 |
+
class RateLimitExceededError(APIError):
|
| 797 |
+
"""Raised when rate limit is exceeded"""
|
| 798 |
+
pass
|
| 799 |
+
|
| 800 |
+
class OpenAIRateLimiter:
|
| 801 |
+
"""Rate limiter with advanced error handling for OpenAI API"""
|
| 802 |
+
|
| 803 |
+
def __init__(self, config: RateLimitConfig):
|
| 804 |
+
self.config = config
|
| 805 |
+
self.requests = deque(maxlen=config.requests_per_minute)
|
| 806 |
+
self.semaphore = asyncio.Semaphore(config.concurrent_requests)
|
| 807 |
+
self.total_requests = 0
|
| 808 |
+
self.errors = deque(maxlen=1000) # Store recent errors
|
| 809 |
+
self.start_time = datetime.now()
|
| 810 |
+
|
| 811 |
+
async def acquire(self):
|
| 812 |
+
"""Acquire permission to make a request"""
|
| 813 |
+
now = time.time()
|
| 814 |
|
| 815 |
+
# Clean old requests
|
| 816 |
+
while self.requests and self.requests[0] < now - 60:
|
| 817 |
+
self.requests.popleft()
|
| 818 |
+
|
| 819 |
+
# Check if we're at the limit
|
| 820 |
+
if len(self.requests) >= self.config.requests_per_minute:
|
| 821 |
+
wait_time = 60 - (now - self.requests[0])
|
| 822 |
+
logger.warning(f"Rate limit reached. Waiting {wait_time:.2f} seconds")
|
| 823 |
+
await asyncio.sleep(wait_time)
|
| 824 |
+
|
| 825 |
+
# Add new request timestamp
|
| 826 |
+
self.requests.append(now)
|
| 827 |
+
self.total_requests += 1
|
| 828 |
+
|
| 829 |
+
def get_usage_stats(self) -> Dict[str, Any]:
|
| 830 |
+
"""Get current usage statistics"""
|
| 831 |
+
return {
|
| 832 |
+
"total_requests": self.total_requests,
|
| 833 |
+
"current_rpm": len(self.requests),
|
| 834 |
+
"uptime": (datetime.now() - self.start_time).total_seconds(),
|
| 835 |
+
"error_rate": len(self.errors) / self.total_requests if self.total_requests > 0 else 0
|
| 836 |
+
}
|
| 837 |
+
|
| 838 |
+
@retry(
|
| 839 |
+
stop=stop_after_attempt(3),
|
| 840 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
| 841 |
+
reraise=True
|
| 842 |
+
)
|
| 843 |
+
async def execute_with_retry(self, func, *args, **kwargs):
|
| 844 |
+
"""Execute API call with retry logic"""
|
| 845 |
+
try:
|
| 846 |
+
async with self.semaphore:
|
| 847 |
+
await self.acquire()
|
| 848 |
+
return await func(*args, **kwargs)
|
| 849 |
+
|
| 850 |
+
except Exception as e:
|
| 851 |
+
error_info = {
|
| 852 |
+
"timestamp": datetime.now(),
|
| 853 |
+
"error_type": type(e).__name__,
|
| 854 |
+
"message": str(e)
|
| 855 |
+
}
|
| 856 |
+
self.errors.append(error_info)
|
| 857 |
+
|
| 858 |
+
if isinstance(e, RateLimitExceededError):
|
| 859 |
+
logger.warning("Rate limit exceeded, backing off...")
|
| 860 |
+
await asyncio.sleep(self.config.base_delay)
|
| 861 |
+
raise
|
| 862 |
+
|
| 863 |
+
elif "timeout" in str(e).lower():
|
| 864 |
+
logger.error(f"Timeout error: {str(e)}")
|
| 865 |
+
raise APIError(f"Request timed out after {self.config.timeout} seconds")
|
| 866 |
+
|
| 867 |
+
else:
|
| 868 |
+
logger.error(f"API error: {str(e)}")
|
| 869 |
+
raise
|
| 870 |
+
|
| 871 |
+
class ResponseGenerator:
|
| 872 |
+
"""Generate responses with better context utilization"""
|
| 873 |
+
|
| 874 |
+
def __init__(self, config: PipelineConfig):
|
| 875 |
+
self.generator = OpenAIGenerator(
|
| 876 |
+
api_key=Secret.from_token(config.model.openai_api_key),
|
| 877 |
+
model=config.model.openai_model
|
| 878 |
+
)
|
| 879 |
+
self.prompt_builder = PromptBuilder(
|
| 880 |
template="""
|
| 881 |
+
You are a helpful academic advisor. Answer the following query using the provided calendar information.
|
| 882 |
|
| 883 |
+
Query: {{query}}
|
| 884 |
|
| 885 |
+
Relevant Calendar Information:
|
| 886 |
+
{% for doc in context %}
|
| 887 |
---
|
| 888 |
{{doc.content}}
|
| 889 |
{% endfor %}
|
| 890 |
|
| 891 |
+
Format: {{format}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
|
| 893 |
+
Guidelines:
|
| 894 |
+
1. Answer in Thai language
|
| 895 |
+
2. Be specific about dates and requirements
|
| 896 |
+
3. Include relevant notes or conditions
|
| 897 |
+
4. Format the response according to the specified format
|
| 898 |
+
|
| 899 |
+
Provide your response:
|
| 900 |
+
""")
|
| 901 |
+
|
| 902 |
+
def generate_response(self,
|
| 903 |
+
query: str,
|
| 904 |
+
documents: List[Document],
|
| 905 |
+
query_info: Dict[str, Any]) -> str:
|
| 906 |
+
"""Generate response using retrieved documents"""
|
| 907 |
+
try:
|
| 908 |
+
result = self.prompt_builder.run(
|
| 909 |
+
query=query,
|
| 910 |
+
context=documents,
|
| 911 |
+
format=query_info["response_format"]
|
| 912 |
)
|
| 913 |
+
|
| 914 |
+
response = self.generator.run(prompt=result["prompt"])
|
| 915 |
+
return response["replies"][0]
|
| 916 |
+
|
| 917 |
+
except Exception as e:
|
| 918 |
+
logger.error(f"Response generation failed: {str(e)}")
|
| 919 |
+
return "ขออภัย ไม่สามารถประมวลผลคำตอบได้ในขณะนี้"
|
| 920 |
+
|
| 921 |
+
class AcademicCalendarRAG:
|
| 922 |
+
"""Main RAG pipeline for academic calendar queries"""
|
| 923 |
+
|
| 924 |
+
def __init__(self, config: PipelineConfig):
|
| 925 |
+
self.config = config
|
| 926 |
+
self.document_store = EnhancedDocumentStore(config)
|
| 927 |
+
self.query_processor = AdvancedQueryProcessor(config)
|
| 928 |
+
self.response_generator = ResponseGenerator(config)
|
| 929 |
|
| 930 |
+
def load_data(self, json_data: List[Dict]):
|
| 931 |
+
"""Load and process calendar data"""
|
| 932 |
+
processor = CalendarDataProcessor()
|
| 933 |
+
events = processor.parse_calendar_json(json_data)
|
| 934 |
+
self.document_store.add_events(events)
|
| 935 |
|
|
|
|
|
|
|
|
|
|
| 936 |
def process_query(self, query: str) -> Dict[str, Any]:
|
| 937 |
+
"""Process query and generate response"""
|
| 938 |
try:
|
| 939 |
# Analyze query
|
| 940 |
+
query_info = self.query_processor.process_query(query)
|
| 941 |
|
| 942 |
# Retrieve relevant documents
|
| 943 |
+
documents = self.document_store.search(
|
| 944 |
+
query=query,
|
| 945 |
+
event_type=query_info["event_type"],
|
| 946 |
+
semester=query_info["semester"],
|
| 947 |
+
top_k=self.config.retriever.top_k
|
| 948 |
)
|
| 949 |
|
| 950 |
+
# Generate response
|
| 951 |
+
response = self.response_generator.generate_response(
|
| 952 |
+
query=query,
|
| 953 |
+
documents=documents,
|
| 954 |
+
query_info=query_info
|
| 955 |
+
)
|
| 956 |
|
| 957 |
return {
|
| 958 |
+
"answer": response,
|
| 959 |
"documents": documents,
|
| 960 |
"query_info": query_info
|
| 961 |
}
|
|
|
|
| 968 |
"query_info": {}
|
| 969 |
}
|
| 970 |
|
| 971 |
+
def main():
|
| 972 |
+
"""Main function for processing real calendar queries"""
|
| 973 |
+
try:
|
| 974 |
+
# Load API key
|
| 975 |
+
with open("key.txt", "r") as f:
|
| 976 |
+
openai_api_key = f.read().strip()
|
| 977 |
+
|
| 978 |
+
# Use create_default_config instead of direct PipelineConfig initialization
|
| 979 |
+
config = create_default_config(openai_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 980 |
|
| 981 |
+
# Customize config for Thai academic calendar use case
|
| 982 |
+
config.localization.enable_thai_normalization = True
|
| 983 |
+
config.retriever.top_k = 5 # Adjust based on your needs
|
| 984 |
+
config.model.temperature = 0.3 # Lower temperature for more focused responses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 985 |
|
| 986 |
+
# Initialize pipeline with enhanced config
|
| 987 |
+
pipeline = AcademicCalendarRAG(config)
|
|
|
|
| 988 |
|
| 989 |
+
# Load calendar data
|
| 990 |
+
with open("calendar.json", "r", encoding="utf-8") as f:
|
| 991 |
+
calendar_data = json.load(f)
|
| 992 |
+
pipeline.load_data(calendar_data)
|
| 993 |
|
| 994 |
+
# Real queries to process
|
| 995 |
+
queries = input in web
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
|
| 997 |
+
print("Processing calendar queries...")
|
| 998 |
+
print("=" * 80)
|
| 999 |
+
|
| 1000 |
+
for query in queries:
|
| 1001 |
+
result = pipeline.process_query(query)
|
| 1002 |
+
print(f"\nQuery: {query}")
|
| 1003 |
+
print(f"Answer: {result['answer']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1004 |
|
| 1005 |
+
# # Print retrieved documents for verification
|
| 1006 |
+
# print("\nRetrieved Documents:")
|
| 1007 |
+
# for i, doc in enumerate(result['documents'], 1):
|
| 1008 |
+
# print(f"\nDocument {i}:")
|
| 1009 |
+
# print(doc.content)
|
| 1010 |
|
| 1011 |
+
# # Print query understanding info
|
| 1012 |
+
# print("\nQuery Understanding:")
|
| 1013 |
+
# for key, value in result['query_info'].items():
|
| 1014 |
+
# print(f"{key}: {value}")
|
| 1015 |
+
|
| 1016 |
+
print("=" * 80)
|
| 1017 |
|
| 1018 |
+
except Exception as e:
|
| 1019 |
+
logger.error(f"Pipeline execution failed: {str(e)}")
|
| 1020 |
+
raise
|
| 1021 |
|
| 1022 |
+
if __name__ == "__main__":
|
| 1023 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|