Create calendar_rag.py
Browse files- calendar_rag.py +316 -0
calendar_rag.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack import Pipeline, Document
|
2 |
+
from haystack.components.generators.openai import OpenAIGenerator
|
3 |
+
from haystack.components.builders import PromptBuilder
|
4 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
5 |
+
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
6 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
7 |
+
from haystack.utils import Secret
|
8 |
+
from pathlib import Path
|
9 |
+
import logging
|
10 |
+
from dataclasses import dataclass, field
|
11 |
+
from typing import List, Dict, Any, Optional
|
12 |
+
import json
|
13 |
+
import asyncio
|
14 |
+
from datetime import datetime
|
15 |
+
import re
|
16 |
+
|
17 |
+
# Setup logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class LocalizationConfig:
|
23 |
+
"""Configuration for Thai language handling"""
|
24 |
+
thai_tokenizer_model: str = "thai-tokenizer"
|
25 |
+
enable_thai_normalization: bool = True
|
26 |
+
remove_thai_tones: bool = False
|
27 |
+
keep_english: bool = True
|
28 |
+
custom_stopwords: List[str] = field(default_factory=list)
|
29 |
+
custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class RetrieverConfig:
|
33 |
+
"""Configuration for document retrieval"""
|
34 |
+
top_k: int = 5
|
35 |
+
similarity_threshold: float = 0.7
|
36 |
+
filter_duplicates: bool = True
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ModelConfig:
|
40 |
+
"""Configuration for language models"""
|
41 |
+
openai_api_key: str
|
42 |
+
temperature: float = 0.3
|
43 |
+
max_tokens: int = 2000
|
44 |
+
model: str = "gpt-4"
|
45 |
+
embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class PipelineConfig:
|
49 |
+
"""Main configuration for the RAG pipeline"""
|
50 |
+
model: ModelConfig
|
51 |
+
retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
|
52 |
+
localization: LocalizationConfig = field(default_factory=LocalizationConfig)
|
53 |
+
|
54 |
+
def __post_init__(self):
|
55 |
+
if not self.model.openai_api_key:
|
56 |
+
raise ValueError("OpenAI API key is required")
|
57 |
+
|
58 |
+
class ThaiTextPreprocessor:
|
59 |
+
"""Thai text preprocessing utilities"""
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def normalize_thai_text(text: str) -> str:
|
63 |
+
"""Normalize Thai text"""
|
64 |
+
if not text:
|
65 |
+
return text
|
66 |
+
|
67 |
+
# Normalize whitespace
|
68 |
+
text = re.sub(r'\s+', ' ', text.strip())
|
69 |
+
|
70 |
+
# Normalize Thai numerals
|
71 |
+
thai_digits = '๐๑๒๓๔๕๖๗๘๙'
|
72 |
+
arabic_digits = '0123456789'
|
73 |
+
for thai, arabic in zip(thai_digits, arabic_digits):
|
74 |
+
text = text.replace(thai, arabic)
|
75 |
+
|
76 |
+
return text
|
77 |
+
|
78 |
+
class CalendarEvent:
|
79 |
+
"""Represents an academic calendar event"""
|
80 |
+
|
81 |
+
def __init__(self,
|
82 |
+
date: str,
|
83 |
+
activity: str,
|
84 |
+
semester: str,
|
85 |
+
event_type: str = "academic",
|
86 |
+
note: str = "",
|
87 |
+
time: str = "",
|
88 |
+
section: Optional[str] = None):
|
89 |
+
self.date = date
|
90 |
+
self.activity = activity
|
91 |
+
self.semester = semester
|
92 |
+
self.event_type = event_type
|
93 |
+
self.note = note
|
94 |
+
self.time = time
|
95 |
+
self.section = section
|
96 |
+
|
97 |
+
def to_searchable_text(self) -> str:
|
98 |
+
"""Convert event to searchable text format"""
|
99 |
+
return f"""
|
100 |
+
ภาคการศึกษา: {self.semester}
|
101 |
+
ประเภท: {self.event_type}
|
102 |
+
วันที่: {self.date}
|
103 |
+
เวลา: {self.time or '-'}
|
104 |
+
กิจกรรม: {self.activity}
|
105 |
+
หมวดหมู่: {self.section or '-'}
|
106 |
+
หมายเหตุ: {self.note or '-'}
|
107 |
+
""".strip()
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def from_dict(data: Dict[str, Any]) -> 'CalendarEvent':
|
111 |
+
"""Create event from dictionary"""
|
112 |
+
return CalendarEvent(
|
113 |
+
date=data.get('date', ''),
|
114 |
+
activity=data.get('activity', ''),
|
115 |
+
semester=data.get('semester', ''),
|
116 |
+
event_type=data.get('event_type', 'academic'),
|
117 |
+
note=data.get('note', ''),
|
118 |
+
time=data.get('time', ''),
|
119 |
+
section=data.get('section')
|
120 |
+
)
|
121 |
+
|
122 |
+
class CalendarRAG:
|
123 |
+
"""Main RAG pipeline for academic calendar"""
|
124 |
+
|
125 |
+
def __init__(self, config: PipelineConfig):
|
126 |
+
"""Initialize the pipeline with configuration"""
|
127 |
+
self.config = config
|
128 |
+
self.document_store = InMemoryDocumentStore()
|
129 |
+
self.embedder = SentenceTransformersDocumentEmbedder(
|
130 |
+
model=config.model.embedder_model
|
131 |
+
)
|
132 |
+
self.text_preprocessor = ThaiTextPreprocessor()
|
133 |
+
|
134 |
+
# Initialize OpenAI components
|
135 |
+
self.generator = OpenAIGenerator(
|
136 |
+
api_key=Secret.from_token(config.model.openai_api_key),
|
137 |
+
model=config.model.model,
|
138 |
+
temperature=config.model.temperature
|
139 |
+
)
|
140 |
+
|
141 |
+
self.query_analyzer = PromptBuilder(
|
142 |
+
template="""
|
143 |
+
วิเคราะห์คำถามเกี่ยวกับปฏิทินการศึกษานี้:
|
144 |
+
คำถาม: {{query}}
|
145 |
+
|
146 |
+
กรุณาระบุ:
|
147 |
+
1. ประเภทของข้อมูลที่ต้องการ
|
148 |
+
2. ภาคการศึกษาที่เกี่ยวข้อง
|
149 |
+
3. คำสำคัญที่ต้องค้นหา
|
150 |
+
|
151 |
+
ตอบในรูปแบบ JSON:
|
152 |
+
{
|
153 |
+
"event_type": "registration|deadline|examination|academic|holiday",
|
154 |
+
"semester": "ภาคการศึกษาที่ระบุ หรือ null",
|
155 |
+
"key_terms": ["คำสำคัญไม่เกิน 3 คำ"]
|
156 |
+
}
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
|
160 |
+
self.answer_generator = PromptBuilder(
|
161 |
+
template="""
|
162 |
+
คุณเป็นผู้ช่วยให้ข้อมูลปฏิทินการศึกษา กรุณาตอบคำถามต่อไปนี้โดยใช้ข้อมูลที่ให้มา:
|
163 |
+
|
164 |
+
คำถาม: {{query}}
|
165 |
+
|
166 |
+
ข้อมูลที่เกี่ยวข้อง:
|
167 |
+
{% for doc in documents %}
|
168 |
+
---
|
169 |
+
{{doc.content}}
|
170 |
+
{% endfor %}
|
171 |
+
|
172 |
+
คำแนะนำ:
|
173 |
+
1. ตอบเป็นภาษาไทย
|
174 |
+
2. ระบุวันที่และข้อกำหนดให้ชัดเจน
|
175 |
+
3. รวมหมายเหตุหรือเงื่อนไขที่สำคัญ
|
176 |
+
"""
|
177 |
+
)
|
178 |
+
|
179 |
+
def load_data(self, calendar_data: List[Dict[str, Any]]) -> None:
|
180 |
+
"""Load calendar data into the system"""
|
181 |
+
documents = []
|
182 |
+
|
183 |
+
for entry in calendar_data:
|
184 |
+
# Create calendar event
|
185 |
+
event = CalendarEvent.from_dict(entry)
|
186 |
+
|
187 |
+
# Create searchable document
|
188 |
+
doc = Document(
|
189 |
+
content=event.to_searchable_text(),
|
190 |
+
meta={
|
191 |
+
"event_type": event.event_type,
|
192 |
+
"semester": event.semester,
|
193 |
+
"date": event.date
|
194 |
+
}
|
195 |
+
)
|
196 |
+
documents.append(doc)
|
197 |
+
|
198 |
+
# Compute embeddings
|
199 |
+
embedded_docs = self.embedder.run(documents=documents)["documents"]
|
200 |
+
|
201 |
+
# Store documents
|
202 |
+
self.document_store.write_documents(embedded_docs)
|
203 |
+
|
204 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
205 |
+
"""Process a calendar query and return results"""
|
206 |
+
try:
|
207 |
+
# Analyze query
|
208 |
+
query_info = self._analyze_query(query)
|
209 |
+
|
210 |
+
# Retrieve relevant documents
|
211 |
+
documents = self._retrieve_documents(
|
212 |
+
query,
|
213 |
+
event_type=query_info.get("event_type"),
|
214 |
+
semester=query_info.get("semester")
|
215 |
+
)
|
216 |
+
|
217 |
+
# Generate answer
|
218 |
+
answer = self._generate_answer(query, documents)
|
219 |
+
|
220 |
+
return {
|
221 |
+
"answer": answer,
|
222 |
+
"documents": documents,
|
223 |
+
"query_info": query_info
|
224 |
+
}
|
225 |
+
|
226 |
+
except Exception as e:
|
227 |
+
logger.error(f"Query processing failed: {str(e)}")
|
228 |
+
return {
|
229 |
+
"answer": "ขออภัย ไม่สามารถประมวลผลคำถามได้ในขณะนี้",
|
230 |
+
"documents": [],
|
231 |
+
"query_info": {}
|
232 |
+
}
|
233 |
+
|
234 |
+
def _analyze_query(self, query: str) -> Dict[str, Any]:
|
235 |
+
"""Analyze and extract information from query"""
|
236 |
+
try:
|
237 |
+
# Normalize query
|
238 |
+
normalized_query = self.text_preprocessor.normalize_thai_text(query)
|
239 |
+
|
240 |
+
# Get analysis from OpenAI
|
241 |
+
prompt_result = self.query_analyzer.run(query=normalized_query)
|
242 |
+
response = self.generator.run(prompt=prompt_result["prompt"])
|
243 |
+
|
244 |
+
if not response or not response.get("replies"):
|
245 |
+
raise ValueError("Empty response from query analyzer")
|
246 |
+
|
247 |
+
analysis = json.loads(response["replies"][0])
|
248 |
+
analysis["original_query"] = query
|
249 |
+
|
250 |
+
return analysis
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
logger.error(f"Query analysis failed: {str(e)}")
|
254 |
+
return {
|
255 |
+
"original_query": query,
|
256 |
+
"event_type": None,
|
257 |
+
"semester": None,
|
258 |
+
"key_terms": []
|
259 |
+
}
|
260 |
+
|
261 |
+
def _retrieve_documents(self,
|
262 |
+
query: str,
|
263 |
+
event_type: Optional[str] = None,
|
264 |
+
semester: Optional[str] = None) -> List[Document]:
|
265 |
+
"""Retrieve relevant documents"""
|
266 |
+
# Create retriever
|
267 |
+
retriever = InMemoryEmbeddingRetriever(
|
268 |
+
document_store=self.document_store,
|
269 |
+
top_k=self.config.retriever.top_k
|
270 |
+
)
|
271 |
+
|
272 |
+
# Get query embedding
|
273 |
+
query_doc = Document(content=query)
|
274 |
+
embedded_query = self.embedder.run(documents=[query_doc])["documents"][0]
|
275 |
+
|
276 |
+
# Retrieve documents
|
277 |
+
results = retriever.run(query_embedding=embedded_query.embedding)["documents"]
|
278 |
+
|
279 |
+
# Filter results if needed
|
280 |
+
filtered_results = []
|
281 |
+
for doc in results:
|
282 |
+
if event_type and doc.meta['event_type'] != event_type:
|
283 |
+
continue
|
284 |
+
if semester and doc.meta['semester'] != semester:
|
285 |
+
continue
|
286 |
+
filtered_results.append(doc)
|
287 |
+
|
288 |
+
return filtered_results[:self.config.retriever.top_k]
|
289 |
+
|
290 |
+
def _generate_answer(self, query: str, documents: List[Document]) -> str:
|
291 |
+
"""Generate answer from retrieved documents"""
|
292 |
+
try:
|
293 |
+
prompt_result = self.answer_generator.run(
|
294 |
+
query=query,
|
295 |
+
documents=documents
|
296 |
+
)
|
297 |
+
|
298 |
+
response = self.generator.run(prompt=prompt_result["prompt"])
|
299 |
+
|
300 |
+
if not response or not response.get("replies"):
|
301 |
+
raise ValueError("Empty response from answer generator")
|
302 |
+
|
303 |
+
return response["replies"][0]
|
304 |
+
|
305 |
+
except Exception as e:
|
306 |
+
logger.error(f"Answer generation failed: {str(e)}")
|
307 |
+
return "ขออภัย ไม่สามารถสร้างคำตอบได้ในขณะนี้"
|
308 |
+
|
309 |
+
def create_default_config(api_key: str) -> PipelineConfig:
|
310 |
+
"""Create default pipeline configuration"""
|
311 |
+
model_config = ModelConfig(openai_api_key=api_key)
|
312 |
+
return PipelineConfig(
|
313 |
+
model=model_config,
|
314 |
+
retriever=RetrieverConfig(),
|
315 |
+
localization=LocalizationConfig()
|
316 |
+
)
|