Spaces:
Runtime error
Runtime error
File size: 16,894 Bytes
221b17d 806933c 131ab57 03a05f9 806933c 221b17d 806933c 99c9dfa 221b17d 131ab57 221b17d f59d0de 221b17d 94d5fbd 221b17d 8e2dc9e 221b17d 5306575 806933c 221b17d 2083826 221b17d 806933c 221b17d 3401e39 806933c 3401e39 f59d0de 806933c 221b17d 94d5fbd 221b17d f59d0de 3401e39 221b17d f59d0de 131ab57 221b17d 3401e39 221b17d 131ab57 3401e39 f59d0de 94d5fbd 221b17d 5052ae3 221b17d 131ab57 5052ae3 221b17d 131ab57 221b17d f59d0de 221b17d 94d5fbd 221b17d 3401e39 221b17d 131ab57 221b17d 131ab57 806933c 131ab57 221b17d 03a05f9 221b17d 94d5fbd 03a05f9 131ab57 806933c 221b17d 131ab57 03a05f9 f59d0de 806933c 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 806933c 221b17d 03a05f9 221b17d 03a05f9 221b17d 03a05f9 806933c 221b17d 3331097 03a05f9 806933c 03a05f9 3331097 221b17d 806933c 03a05f9 221b17d 4d8950d 03a05f9 806933c 221b17d 131ab57 221b17d 806933c 03a05f9 806933c 221b17d 806933c 221b17d 806933c 221b17d 806933c 221b17d 03a05f9 806933c 03a05f9 806933c 03a05f9 221b17d 94d5fbd 03a05f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗
import os
from dotenv import load_dotenv
load_dotenv()
from langchain_community.utils import user_agent
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import WebBaseLoader, TextLoader
from langchain.prompts import PromptTemplate
from langchain.schema import Document
import gradio as gr
from openai import OpenAI
import re
import time
import requests
def load_documents(sources):
documents = []
for source in sources:
try:
if isinstance(source, str):
if source.startswith('http'):
loader = WebBaseLoader(source)
else:
loader = TextLoader(source)
documents.extend(loader.load())
elif isinstance(source, dict):
documents.append(Document(page_content=source['content'], metadata=source.get('metadata', {})))
except Exception as e:
print(f"Error loading source {source}: {str(e)}")
return documents
sources = [
# "TaxQADataSet_Slim1.txt",
# "TaxQADataSet_Slim2.txt",
# "TaxQADataSet_Slim3.txt",
# "TaxQADataSet_Slim4.txt",
# "TaxQADataSet_Slim5.txt",
# "TaxQADataSet_Slim6.txt",
# "TaxQADataSet_ntpc1.txt",
# "TaxQADataSet_ntpc2.txt",
# "TaxQADataSet_kctax.txt",
# "TaxQADataSet_chutax.txt",
# "LandTaxAct1100623.txt",
# "TheEnforcementRulesoftheLandTaxAct1100923.txt",
# "HouseTaxAct1130103.txt",
# "VehicleLicenseTaxAct1101230.txt",
# "TaxCollectionAct1101217.txt",
# "AmusementTaxAct960523.txt",
# "StampTaxAct910515.txt",
"DeedTaxAct990505.txt"
]
documents = load_documents(sources)
print(f"\n成功載入 {len(documents)} 個網址或檔案")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=50,
length_function=len,
is_separator_regex=False,
separators=["\n\n\n","\n\n", "\n", "。"]
)
split_docs = text_splitter.split_documents(documents)
print(f"分割後的文件數量:{len(split_docs)}")
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
print(f"\n成功初始化 Microsoft 嵌入型")
print(f"\n開始建立向量資料庫")
vectorstore = Chroma.from_documents(split_docs, embeddings, persist_directory="./Knowledge-base")
print(f"成功建立 Chroma 向量資料庫,共有 {len(split_docs)} 個文檔")
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={
"k": min(4, len(split_docs)),
"fetch_k": min(20, len(split_docs)),
"lambda_mult": 0.8
}
)
print(f"檢索演算法:Maximum Marginal Relevance Retrieval")
print(f"檢索文檔數量:k={min(4, len(split_docs))}, fetch_k={min(20, len(split_docs))}")
template = """Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese.
在回答之前,請仔細分析檢索到的上下文,確保你的回答準確完整反映了上下文中的訊息,而不是依賴先前的知識,在回應的答案中絕對不要提到是根據上下文回答。
如果檢索到的多個上下文之間存在聯繫,請整合這些訊息以提供更全面的回答,但要避免過度推斷。
如果檢索到的上下文不包含足夠回答問題的訊息,請誠實的說明,不要試圖編造答案。
上下文: {context}
問題: {question}
答案:"""
PROMPT = PromptTemplate(
template=template, input_variables=["context", "question"]
)
def create_chain(llm):
return RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
print(f"成功建立 RAG Chain")
def initialize_llm(api_key):
return ChatGroq(
groq_api_key=api_key,
model_name='llama-3.1-70b-versatile'
)
def generate_insight_questions(query, api_key):
llm = initialize_llm(api_key)
prompt = f"""Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in "Traditional Chinese".
根據以下回答,生成3個相關的洞察問題:
原始問題: {query}
請提供3個簡短但有深度的問題,這些問題應該符合:
1. 與原始問題緊密相關
2. 準確重新描述原始問題
3. 引導更深入的解決原始問題
請直接列出這3個問題,每個問題一行,不要添加編號或其他文字。
"""
try:
response = llm.invoke(prompt)
if hasattr(response, 'content'):
questions = response.content.split('\n')
else:
questions = str(response).split('\n')
while len(questions) < 3:
questions.append("提供更多地方稅資訊")
return questions[:3]
except Exception as e:
print(f"Error generating insight questions: {str(e)}")
return ["提供更多地方稅資訊", "提供其他地方稅問題", "還想了解什麼地方稅目"]
def answer_question(query, api_key):
try:
gr.Info("檢索地方稅知識庫中......")
llm = initialize_llm(api_key)
chain = create_chain(llm)
result = chain.invoke({"query": query})
answer = result["result"]
insight_questions = generate_insight_questions(query, api_key)
while len(insight_questions) < 3:
insight_questions.append("提供更多地方稅資訊")
return answer, insight_questions[:3]
except Exception as e:
return f"抱歉,處理您的問題時發生錯誤:{str(e)}", []
def split_questions(query):
questions = re.split(r'[?!。 ]', query)
return [q.strip() for q in questions if q.strip()]
def answer_multiple_questions(query, api_key):
questions = split_questions(query)
all_answers = []
all_insight_questions = []
for question in questions:
answer, insight_questions = answer_question(question, api_key)
if len(questions) > 1:
all_answers.append(f"【問題】{question}\n答案:{answer}")
else:
all_answers.append(answer)
all_insight_questions.extend(insight_questions)
if len(questions) > 1:
combined_answer = "\n\n\n".join(all_answers)
else:
combined_answer = "\n".join(all_answers)
selected_insight_questions = all_insight_questions[:3]
return combined_answer, selected_insight_questions
def get_tax_law(tax_type):
tax_law_dict = {
"房屋稅": "房屋稅條例",
"地價稅": "土地稅法",
"契稅": "契稅條例",
"娛樂稅": "娛樂稅法",
"印花稅": "印花稅法",
"牌照稅": "使用牌照稅法",
"稅捐稽徵法": "稅捐稽徵法"
}
return tax_law_dict.get(tax_type, "無稅法")
def fetch_law_summary(tax_law, keywords):
url = "https://ttc.mof.gov.tw/Api/GetData"
headers = {
"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36"
}
gr.Info("檢索法令彙編函釋中......")
all_results = []
for keyword in keywords:
payload = {
"FunctionID": "FB10001",
"ObjParams[TaxAct]": tax_law,
"ObjParams[TaxVer]": "請選擇",
"ObjParams[Chapter]": "請選擇",
"ObjParams[Article]": "請選擇",
"ObjParams[Content]": keyword,
"ObjParams[Operator01]": "0",
"ObjParams[Content01]": "",
"ObjParams[Operator02]": "0",
"ObjParams[Content02]": ""
}
try:
response = requests.post(url, data=payload, headers=headers)
response.raise_for_status()
data = response.json()
if data["Code"] == "1" and "Table" in data["Data"]:
all_results.extend(data["Data"]["Table"])
except Exception as e:
print(f"Error fetching law summary for keyword '{keyword}': {str(e)}")
if all_results:
summary = "<h3>法令彙編函釋檢索結果:</h3>"
for index, result in enumerate(all_results[:20]): # Limit to first 20 results across all keywords
summary += f"""
<details>
<summary style="cursor: pointer; color: #0066cc;">{result['Title']}</summary>
<p>{result['Content']}</p>
</details>
"""
return summary
else:
return "<p>未找到相關法令彙編函釋。</p>"
def llm_openai_api(query, answer):
client = OpenAI(
api_key=os.environ.get("YOUR_API_TOKEN"),
base_url="https://api.sambanova.ai/v1",
)
user_prompt = f"""
「題目:{query}
答案:{answer}」
請詳細分析答案內容後,依據與題目相關性最高的稅目名稱及最多3個重點關鍵字回應我,問題與答案中的稅目名稱列入TaxName,關鍵字列入KeyWord,只須根據格式回應,不要寫其他的。
# 回應字典格式範例:
{{"TaxName": "地價稅", "KeyWord": "宿舍用地,醫護人員"}}
"""
try:
response = client.chat.completions.create(
model='Meta-Llama-3.1-405B-Instruct',
messages=[
{"role": "system", "content": "Must reply to user in Traditional Chinese."},
{"role": "user", "content": user_prompt}
],
temperature=0.7,
top_p=1
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"請輸入正確的 API Key!Error: {str(e)}")
return '{"TaxName": "", "KeyWord": ""}'
def handle_interaction(query, api_key, state):
gr.Info("開始處理問題,請稍待片刻......")
start_time = time.time()
if state is None:
state = {"history": []}
if not api_key:
api_key = os.getenv("YOUR_API_KEY")
query = convert_punctuation(query)
answer, insight_questions = answer_multiple_questions(query, api_key)
api_response = llm_openai_api(query, answer)
tax_name = ""
keywords = []
print(api_response)
try:
response_dict = eval(api_response)
tax_name = response_dict.get("TaxName", "")
keywords = response_dict.get("KeyWord", "").split(",")
except:
print("Error parsing api_response")
tax_law = get_tax_law(tax_name)
law_summary_content = fetch_law_summary(tax_law, keywords)
state["history"].append((query, answer))
while len(insight_questions) < 3:
insight_questions.append("提供更多地方稅資訊")
end_time = time.time()
gr.Info(f"Model 已答覆,執行時間: {(end_time - start_time):.2f} 秒。")
return answer, insight_questions[0], insight_questions[1], insight_questions[2], state, query, law_summary_content
def convert_punctuation(text):
return text.replace('?', '?').replace(',', ',').replace('!', '!').replace(' ', ' ')
def clear_outputs():
return "", "", gr.update(value="", visible=False)
custom_css = """
.query-input {
background-color: #B7E0FF !important;
padding: 15px !important;
border-radius: 10px !important;
margin: 0 !important;
}
.query-input textarea {
font-size: 18px !important;
background-color: #ffffff;
border: 1px solid #f0f8ff;
border-radius: 8px;
}
.answer-box {
background-color: #FFF5CD !important;
padding: 10px !important;
border-radius: 10px !important;
margin: 0 !important;
}
.answer-box textarea {
font-size: 18px !important;
background-color: #ffffff;
border: 1px solid #f0f8ff;
border-radius: 8px;
}
.center-text {
text-align: center !important;
color: #ff4081;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
margin-bottom: 0 !important;
}
#submit-btn {
border-radius: 10px !important;
border: none !important;
background-color: #ff4081 !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
margin: 0 !important;
}
#submit-btn:hover {
background-color: #f50057 !important;
transform: scale(1.05);
}
.insight-btn {
border-radius: 10px !important;
border: none !important;
background-color: #00bcd4 !important;
}
.insight-btn:hover {
background-color: #00acc1 !important;
}
.gr-form {
background-color: #e8f5e9 !important;
padding: 15px !important;
border-radius: 10px !important;
}
.api-key-input {
background-color: #FFCFB3 !important;
padding: 15px !important;
border-radius: 10px !important;
margin: 0 !important;
}
.text-background {
font-size: 18px !important;
padding: 5px !important;
border-radius: 10px !important;
border: 2px solid #B7E0FF !important;
margin: 0 !important;
}
.clear-button {
color: white !important;
background-color: #000000 !important;
padding: 5px !important;
border-radius: 10px !important;
margin: 0 !important;
}
.clear-button:hover {
background-color: #000000 !important;
transform: scale(1.05);
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as iface:
gr.Markdown("""
# 地方稅知識庫系統 - 財政部財政資訊中心
> ### **※ RAG-based 系統部署:江信宗,LLM:Llama-3.1-70B,以地方稅極少知識資料示範,僅供參考,準確資訊請依據地方稅稽徵機關回覆為準。**
""", elem_classes="center-text")
with gr.Row():
query_input = gr.Textbox(label="輸入您的問題,系統將基於學習到的知識資料提供相關答案。", placeholder="請輸入您的問題(支援同時輸入多個問題,例如:問題1?問題2?)", autofocus=True, scale=3, max_lines=5, elem_classes="query-input")
api_key_input = gr.Textbox(label="請輸入您的 API Key", type="password", placeholder="API authentication key", scale=1, elem_classes="api-key-input")
answer_output = gr.Textbox(label="知識庫答案", interactive=False, max_lines=40, elem_classes="answer-box")
with gr.Row():
insight_q1 = gr.Button("洞察問題 1", visible=False, elem_classes=["insight-btn"])
insight_q2 = gr.Button("洞察問題 2", visible=False, elem_classes=["insight-btn"])
insight_q3 = gr.Button("洞察問題 3", visible=False, elem_classes=["insight-btn"])
state = gr.State()
current_question = gr.Textbox(lines=2, label="當前問題", visible=False)
law_summary = gr.HTML(label="法令彙編函釋檢索", elem_classes="text-background", visible=False) # Set initial visibility to False
with gr.Row():
submit_btn = gr.Button("傳送", variant="primary", scale=3, elem_id="submit-btn")
clear_button = gr.Button("清除", variant="secondary", scale=1, elem_classes="clear-button")
gr.HTML(
"""
<span style="font-size: 18px; color: black;">※ 財政部各稅法令函釋檢索系統:</span><a href="https://ttc.mof.gov.tw/" title="財政部各稅法令函釋檢索系統" style="font-size: 18px; color: red;">https://ttc.mof.gov.tw/</a>
"""
)
def update_ui(answer, q1, q2, q3, state, current_q, law_summary):
return [
answer,
gr.update(value=q1, visible=bool(q1)),
gr.update(value=q2, visible=bool(q2)),
gr.update(value=q3, visible=bool(q3)),
state,
current_q,
gr.update(value=law_summary, visible=bool(law_summary.strip()))
]
submit_btn.click(
fn=handle_interaction,
inputs=[query_input, api_key_input, state],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary]
).then(
fn=update_ui,
inputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary]
)
for btn in [insight_q1, insight_q2, insight_q3]:
btn.click(
lambda x: x,
inputs=[btn],
outputs=[query_input]
)
def clear_outputs():
return "", "", gr.update(value="", visible=False)
clear_button.click(
fn=clear_outputs,
inputs=[],
outputs=[query_input, answer_output, law_summary]
)
if __name__ == "__main__":
if "SPACE_ID" in os.environ:
iface.launch()
else:
iface.launch(share=True, show_api=False)
|