Spaces:
Runtime error
Runtime error
File size: 10,833 Bytes
221b17d 131ab57 221b17d 131ab57 221b17d 131ab57 3331097 7d5a1f9 d4c6110 76a8f0a 3401e39 76a8f0a 33db524 221b17d 131ab57 221b17d 728d4cf 221b17d 94d5fbd 221b17d 8e2dc9e 221b17d 5306575 94d5fbd 221b17d 2083826 221b17d 3401e39 221b17d 94d5fbd 221b17d 3401e39 221b17d 131ab57 221b17d 3401e39 221b17d 131ab57 3401e39 94d5fbd 221b17d 5052ae3 221b17d 131ab57 5052ae3 221b17d 131ab57 221b17d 94d5fbd 221b17d 3401e39 221b17d 131ab57 221b17d 131ab57 221b17d 94d5fbd 131ab57 221b17d 131ab57 221b17d 3331097 3401e39 3331097 221b17d 3401e39 221b17d 3401e39 3331097 221b17d 131ab57 221b17d 131ab57 221b17d 94d5fbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗
import os
from dotenv import load_dotenv
load_dotenv()
from langchain_community.utils import user_agent
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import WebBaseLoader, TextLoader
from langchain.prompts import PromptTemplate
from langchain.schema import Document
import gradio as gr
import re
def initialize_llm(api_key):
return ChatGroq(
groq_api_key=api_key,
model_name='llama-3.1-70b-versatile'
)
print(f"成功初始化大型語言模型(LLM)")
def load_documents(sources):
documents = []
for source in sources:
try:
if isinstance(source, str):
if source.startswith('http'):
loader = WebBaseLoader(source)
else:
loader = TextLoader(source)
documents.extend(loader.load())
elif isinstance(source, dict):
documents.append(Document(page_content=source['content'], metadata=source.get('metadata', {})))
except Exception as e:
print(f"Error loading source {source}: {str(e)}")
return documents
sources = [
"TaxQADataSet_Slim1.txt",
"TaxQADataSet_Slim2.txt",
"TaxQADataSet_Slim3.txt",
"TaxQADataSet_Slim4.txt",
"TaxQADataSet_Slim5.txt",
"TaxQADataSet_Slim6.txt",
"TaxQADataSet_ntpc1.txt",
"TaxQADataSet_ntpc2.txt",
"TaxQADataSet_kctax.txt",
"TaxQADataSet_chutax.txt",
"LandTaxAct1100623.txt",
"TheEnforcementRulesoftheLandTaxAct1100923.txt",
"HouseTaxAct1130103.txt",
"VehicleLicenseTaxAct1101230.txt",
"TaxCollectionAct1101217.txt",
"AmusementTaxAct960523.txt",
"StampTaxAct910515.txt",
"DeedTaxAct990505.txt"
]
documents = load_documents(sources)
print(f"\n成功載入 {len(documents)} 個網址或檔案")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=50,
length_function=len,
is_separator_regex=False,
separators=["\n\n\n","\n\n", "\n", "。"]
)
split_docs = text_splitter.split_documents(documents)
print(f"分割後的文件數量:{len(split_docs)}")
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
print(f"\n成功初始化微軟嵌入模型")
print(f"\n開始建立向量資料庫")
vectorstore = Chroma.from_documents(split_docs, embeddings, persist_directory="./Knowledge-base")
print(f"成功建立 Chroma 向量資料庫")
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={
"k": 4,
"fetch_k": 20,
"lambda_mult": 0.8
}
)
print(f"成功建立檢索器,搜尋演算法:Maximum Marginal Relevance Retrieval")
template = """Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese.
在回答之前,請仔細分析檢索到的上下文,確保你的回答準確完整反映了上下文中的訊息,而不是依賴先前的知識,在回應的答案中絕對不要提到是根據上下文回答。
如果檢索到的多個上下文之間存在聯繫,請整合這些訊息以提供更全面的回答,但要避免過度推斷。
如果檢索到的上下文不包含足夠回答問題的訊息,請誠實的說明,不要試圖編造答案。
上下文: {context}
問題: {question}
答案:"""
PROMPT = PromptTemplate(
template=template, input_variables=["context", "question"]
)
print(f"成功定義 Prompt Template")
def create_chain(llm):
return RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT}
)
print(f"成功建立 RAG Chain")
def generate_insight_questions(query, api_key):
llm = initialize_llm(api_key)
prompt = f"""Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese.
根據以下回答,生成3個相關的洞察問題:
原始問題: {query}
請提供3個簡短但有深度的問題,這些問題應該符合:
1. 與原始問題緊密相關
2. 重新準確描述原始問題
3. 引導更深入的解決原始問題
請直接列出這3個問題,每個問題一行,不要添加編號或其他文字。
"""
try:
response = llm.invoke(prompt)
if hasattr(response, 'content'):
questions = response.content.split('\n')
else:
questions = str(response).split('\n')
while len(questions) < 3:
questions.append("提供更多地方稅資訊")
return questions[:3]
except Exception as e:
print(f"Error generating insight questions: {str(e)}")
return ["提供更多地方稅資訊", "提供其他地方稅問題", "還想了解什麼地方稅目"]
def answer_question(query, api_key):
try:
llm = initialize_llm(api_key)
chain = create_chain(llm)
result = chain.invoke({"query": query})
answer = result["result"]
insight_questions = generate_insight_questions(query, api_key)
while len(insight_questions) < 3:
insight_questions.append("提供更多地方稅資訊")
return answer, insight_questions[:3]
except Exception as e:
return f"抱歉,處理您的問題時發生錯誤:{str(e)}", []
def split_questions(query):
questions = re.split(r'[?!。 ]', query)
return [q.strip() for q in questions if q.strip()]
def answer_multiple_questions(query, api_key):
questions = split_questions(query)
all_answers = []
all_insight_questions = []
for question in questions:
answer, insight_questions = answer_question(question, api_key)
if len(questions) > 1:
all_answers.append(f"【問題】{question}\n答案:{answer}")
else:
all_answers.append(answer)
all_insight_questions.extend(insight_questions)
if len(questions) > 1:
combined_answer = "\n\n\n".join(all_answers)
else:
combined_answer = "\n".join(all_answers)
selected_insight_questions = all_insight_questions[:3]
return combined_answer, selected_insight_questions
def convert_punctuation(text):
return text.replace('?', '?').replace(',', ',').replace('!', '!').replace(' ', ' ')
def handle_interaction(query, api_key, state):
if state is None:
state = {"history": []}
if not api_key:
api_key = os.getenv("Llama70B_Key")
query = convert_punctuation(query)
answer, insight_questions = answer_multiple_questions(query, api_key)
state["history"].append((query, answer))
while len(insight_questions) < 3:
insight_questions.append("提供更多地方稅資訊")
return answer, insight_questions[0], insight_questions[1], insight_questions[2], state, query
custom_css = """
body {
background-color: #e8f5e9;
}
#answer-box textarea, #query-input textarea {
font-size: 18px !important;
background-color: #ffffff;
border: 1px solid #81c784;
border-radius: 8px;
}
.center-text {
text-align: center !important;
color: #2e7d32 !important;
}
.gradio-container {
background-color: #c8e6c9 !important;
border-radius: 15px !important;
padding: 20px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.gr-button {
color: white !important;
border: none !important;
border-radius: 20px !important;
transition: all 0.3s ease !important;
font-weight: bold !important;
}
.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}
#submit-btn {
background-color: #ff4081 !important;
}
#submit-btn:hover {
background-color: #f50057 !important;
}
.insight-btn {
background-color: #00bcd4 !important;
}
.insight-btn:hover {
background-color: #00acc1 !important;
}
.gr-form {
background-color: #e8f5e9 !important;
padding: 15px !important;
border-radius: 10px !important;
}
.api-key-input {
max-width: 510px !important;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as iface:
gr.Markdown("# 地方稅知識庫系統 - 財政部財政資訊中心", elem_classes=["center-text"])
gr.Markdown("※ RAG-based 系統部署:江信宗,LLM:Llama-3.1-70B,以地方稅極少知識資料示範,僅供參考,準確資訊請依據地方稅稽徵機關回覆為準。", elem_classes=["center-text"])
with gr.Row():
query_input = gr.Textbox(lines=2, placeholder="請輸入您的問題(支援同時輸入多個問題,例如:問題1?問題2?)", label="輸入您的問題,系統將基於學習到的知識資料提供相關答案。", elem_id="query-input")
api_key_input = gr.Textbox(type="password", placeholder="請輸入您的 API Key", label="API authentication key for large language models", elem_classes="api-key-input")
answer_output = gr.Textbox(lines=6, label="答案:", elem_id="answer-box")
with gr.Row():
insight_q1 = gr.Button("洞察問題 1", visible=False, elem_classes=["insight-btn"])
insight_q2 = gr.Button("洞察問題 2", visible=False, elem_classes=["insight-btn"])
insight_q3 = gr.Button("洞察問題 3", visible=False, elem_classes=["insight-btn"])
state = gr.State()
current_question = gr.Textbox(lines=2, label="當前問題", visible=False)
submit_btn = gr.Button("傳送", elem_id="submit-btn")
def update_ui(answer, q1, q2, q3, state, current_q):
return [
answer,
gr.update(value=q1, visible=bool(q1)),
gr.update(value=q2, visible=bool(q2)),
gr.update(value=q3, visible=bool(q3)),
state,
current_q
]
submit_btn.click(
fn=handle_interaction,
inputs=[query_input, api_key_input, state],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question]
).then(
fn=update_ui,
inputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question],
outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question]
)
for btn in [insight_q1, insight_q2, insight_q3]:
btn.click(
lambda x: x,
inputs=[btn],
outputs=[query_input]
)
if __name__ == "__main__":
if "SPACE_ID" in os.environ:
iface.launch()
else:
iface.launch(share=True)
|