File size: 19,976 Bytes
221b17d
 
 
 
 
 
7129c1e
 
221b17d
 
 
 
 
 
 
 
 
a9a230a
7129c1e
131ab57
03a05f9
221b17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a230a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c9dfa
221b17d
 
 
7129c1e
221b17d
 
 
f59d0de
221b17d
94d5fbd
221b17d
 
 
 
8e2dc9e
221b17d
5306575
7129c1e
221b17d
2083826
221b17d
806933c
221b17d
3401e39
 
 
806933c
 
3401e39
 
 
f59d0de
806933c
221b17d
 
94d5fbd
 
221b17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f59d0de
 
 
 
 
 
3401e39
221b17d
f59d0de
131ab57
221b17d
3401e39
221b17d
131ab57
3401e39
f59d0de
94d5fbd
221b17d
5052ae3
221b17d
 
 
 
 
 
 
 
131ab57
5052ae3
221b17d
d2b9953
131ab57
221b17d
 
 
f59d0de
221b17d
 
94d5fbd
221b17d
3401e39
221b17d
131ab57
221b17d
 
 
 
131ab57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806933c
 
 
 
d2b9953
 
806933c
 
 
d2b9953
806933c
d2b9953
 
 
 
 
 
806933c
 
 
 
 
 
 
7129c1e
 
 
 
 
806933c
 
1abda26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806933c
 
 
 
 
1abda26
806933c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1abda26
806933c
7129c1e
d2b9953
 
 
 
 
1abda26
806933c
 
 
 
 
 
 
 
d2b9953
806933c
 
 
 
 
 
 
 
 
7129c1e
806933c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b9953
 
806933c
131ab57
221b17d
03a05f9
 
221b17d
 
94d5fbd
a9a230a
 
 
 
 
 
 
 
7129c1e
 
a9a230a
d2b9953
03a05f9
131ab57
 
d2b9953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221b17d
131ab57
 
03a05f9
a9a230a
806933c
 
 
 
 
 
 
221b17d
 
03a05f9
 
 
 
 
221b17d
03a05f9
221b17d
 
03a05f9
221b17d
 
03a05f9
 
 
 
 
221b17d
03a05f9
 
 
 
 
221b17d
03a05f9
 
 
 
 
221b17d
 
03a05f9
806933c
221b17d
03a05f9
 
 
 
221b17d
 
 
03a05f9
221b17d
 
03a05f9
806933c
d2b9953
221b17d
 
d2b9953
221b17d
 
 
 
 
 
3331097
03a05f9
 
 
 
 
806933c
 
 
 
 
 
 
03a05f9
 
 
 
 
 
 
 
 
 
3331097
221b17d
 
806933c
03a05f9
 
7129c1e
03a05f9
221b17d
4d8950d
03a05f9
806933c
221b17d
131ab57
 
 
221b17d
 
d2b9953
03a05f9
 
 
806933c
 
 
 
 
 
221b17d
 
 
 
 
 
806933c
 
221b17d
 
 
 
806933c
221b17d
 
806933c
 
221b17d
 
 
 
 
 
 
03a05f9
806933c
03a05f9
 
 
806933c
03a05f9
221b17d
 
94d5fbd
 
 
03a05f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗

import os
from dotenv import load_dotenv
load_dotenv()
import gradio as gr
from openai import OpenAI
from langchain_community.utils import user_agent
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import WebBaseLoader, TextLoader
from langchain.prompts import PromptTemplate
from langchain.schema import Document
import resend
import requests
import re
import time

def load_documents(sources):
    documents = []
    for source in sources:
        try:
            if isinstance(source, str):
                if source.startswith('http'):
                    loader = WebBaseLoader(source)
                else:
                    loader = TextLoader(source)
                documents.extend(loader.load())
            elif isinstance(source, dict):
                documents.append(Document(page_content=source['content'], metadata=source.get('metadata', {})))
        except Exception as e:
            print(f"Error loading source {source}: {str(e)}")
    return documents

sources = [
    "TaxQADataSet_Slim1.txt",
    "TaxQADataSet_Slim2.txt",
    "TaxQADataSet_Slim3.txt",
    "TaxQADataSet_Slim4.txt",
    "TaxQADataSet_Slim5.txt",
    "TaxQADataSet_Slim6.txt",
    "TaxQADataSet_ntpc1.txt",
    "TaxQADataSet_ntpc2.txt",
    "TaxQADataSet_kctax.txt",
    "TaxQADataSet_chutax.txt",
    "LandTaxAct1100623.txt",
    "TheEnforcementRulesoftheLandTaxAct1100923.txt",
    "HouseTaxAct1130103.txt",
    "VehicleLicenseTaxAct1101230.txt",
    "TaxCollectionAct1101217.txt",
    "AmusementTaxAct960523.txt",
    "StampTaxAct910515.txt",
    "DeedTaxAct990505.txt"
]

documents = load_documents(sources)
print(f"\n成功載入 {len(documents)} 個檔案")

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=512,
    chunk_overlap=50,
    length_function=len,
    is_separator_regex=False,
    separators=["\n\n\n","\n\n", "\n", "。"]
)

split_docs = text_splitter.split_documents(documents)
print(f"分割後的文件數量:{len(split_docs)}")

embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
print(f"\n成功初始化 Microsoft 嵌入模型")

print(f"\n開始建立向量資料庫")
vectorstore = Chroma.from_documents(split_docs, embeddings, persist_directory="./Knowledge-base")
print(f"成功建立 Chroma 向量資料庫,共有 {len(split_docs)} 個文檔")

retriever = vectorstore.as_retriever(
    search_type="mmr",
    search_kwargs={
        "k": min(4, len(split_docs)),
        "fetch_k": min(20, len(split_docs)),
        "lambda_mult": 0.8
    }
)
print(f"檢索演算法:Maximum Marginal Relevance Retrieval")
print(f"檢索文檔數量:k={min(4, len(split_docs))}, fetch_k={min(20, len(split_docs))}")

template = """Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese.
在回答之前,請仔細分析檢索到的上下文,確保你的回答準確完整反映了上下文中的訊息,而不是依賴先前的知識,在回應的答案中絕對不要提到是根據上下文回答。
如果檢索到的多個上下文之間存在聯繫,請整合這些訊息以提供更全面的回答,但要避免過度推斷。
如果檢索到的上下文不包含足夠回答問題的訊息,請誠實的說明,不要試圖編造答案。

上下文: {context}

問題: {question}

答案:"""

PROMPT = PromptTemplate(
    template=template, input_variables=["context", "question"]
)

def create_chain(llm):
    return RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
        chain_type_kwargs={"prompt": PROMPT}
    )
print(f"成功建立 RAG Chain")

def initialize_llm(api_key):
    return ChatGroq(
        groq_api_key=api_key,
        model_name='llama-3.1-70b-versatile'
    )

def generate_insight_questions(query, api_key):
    llm = initialize_llm(api_key)
    prompt = f"""Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in "Traditional Chinese".
    根據以下回答,生成3個相關的洞察問題:

    原始問題: {query}

    請提供3個簡短但有深度的問題,這些問題應該符合:
    1. 與原始問題緊密相關
    2. 準確重新描述原始問題
    3. 引導更深入的解決原始問題

    請直接列出這3個問題,每個問題一行,不要添加編號或其他文字。
    """
    try:
        response = llm.invoke(prompt)
        if hasattr(response, 'content'):
            questions = response.content.split('\n')
        else:
            questions = str(response).split('\n')
        while len(questions) < 3:
            questions.append("提供更多地方稅資訊")
        return questions[:3]
    except Exception as e:
        print(f"Error generating insight questions:{str(e)}")
        return ["提供更多地方稅資訊", "提供其他地方稅問題", "還想了解什麼地方稅目"]

def answer_question(query, api_key):
    try:
        gr.Info("檢索地方稅知識庫中......")
        llm = initialize_llm(api_key)
        chain = create_chain(llm)
        result = chain.invoke({"query": query})
        answer = result["result"]
        insight_questions = generate_insight_questions(query, api_key)
        while len(insight_questions) < 3:
            insight_questions.append("提供更多地方稅資訊")
        return answer, insight_questions[:3]
    except Exception as e:
        return f"抱歉,處理您的問題時發生錯誤:{str(e)}", []

def split_questions(query):
    questions = re.split(r'[?!。 ]', query)
    return [q.strip() for q in questions if q.strip()]

def answer_multiple_questions(query, api_key):
    questions = split_questions(query)
    all_answers = []
    all_insight_questions = []
    for question in questions:
        answer, insight_questions = answer_question(question, api_key)
        if len(questions) > 1:
            all_answers.append(f"【問題】{question}\n答案:{answer}")
        else:
            all_answers.append(answer)
        all_insight_questions.extend(insight_questions)
    if len(questions) > 1:
      combined_answer = "\n\n\n".join(all_answers)
    else:
      combined_answer = "\n".join(all_answers)
    selected_insight_questions = all_insight_questions[:3]
    return combined_answer, selected_insight_questions

def get_tax_law(tax_type):
    tax_law_dict = {
        "房屋稅": "房屋稅條例",
        "地價稅": "土地稅法",
        "土地增值稅": "土地稅法",
        "增值稅": "土地稅法",
        "契稅": "契稅條例",
        "娛樂稅": "娛樂稅法",
        "印花稅": "印花稅法",
        "使用牌照稅": "使用牌照稅法",
        "牌照稅": "使用牌照稅法",
        "稅捐稽徵法": "稅捐稽徵法",
        "綜合所得稅": "所得稅法",
        "所得稅": "所得稅法",
        "遺產稅": "遺產及贈與稅法",
        "贈與稅": "遺產及贈與稅法",
        "營業稅": "營業稅法"
    }
    return tax_law_dict.get(tax_type, "無稅法")

def fetch_law_summary(tax_law, keywords):
    url = "https://ttc.mof.gov.tw/Api/GetData"
    headers = {
        "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36",
        "accept": "application/json, text/javascript, */*; q=0.01",
        "accept-encoding": "gzip, deflate, br, zstd",
        "accept-language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7",
        "referer": "https://ttc.mof.gov.tw/"
    }
    gr.Info("檢索法令彙編函釋中......")
    version_payload = {
        "FunctionID": "FB10001",
        "ObjParams[TaxAct]": tax_law,
        "ObjParams[TaxVer]": "請選擇",
        "ObjParams[Chapter]": "請選擇",
        "ObjParams[Article]": "請選擇",
        "ObjParams[Content]": "",
        "ObjParams[Operator01]": "0",
        "ObjParams[Content01]": "",
        "ObjParams[Operator02]": "0",
        "ObjParams[Content02]": ""
    }
    try:
        version_response = requests.post(url, data=version_payload, headers=headers)
        version_response.raise_for_status()
        version_data = version_response.json()
        if version_data["Code"] == "1" and "Table1" in version_data["Data"]:
            latest_version = "請選擇"
            for item in version_data["Data"]["Table1"]:
                if item["TaxAct"] == tax_law:
                    latest_version = item["TaxVer"]
                    break
            if latest_version == "請選擇":
                print(f"未找到 {tax_law} 的對應版本,使用預設選項。")
        else:
            gr.Warning("無法獲取稅法版本資訊,使用預設選項。")
            latest_version = "請選擇"
    except Exception as e:
        print(f"獲取稅法版本時發生錯誤:{str(e)}")
        latest_version = "請選擇"
    all_results = []
    for keyword in keywords:
        payload = {
            "FunctionID": "FB10001",
            "ObjParams[TaxAct]": tax_law,
            "ObjParams[TaxVer]": latest_version,
            "ObjParams[Chapter]": "請選擇",
            "ObjParams[Article]": "請選擇",
            "ObjParams[Content]": keyword,
            "ObjParams[Operator01]": "0",
            "ObjParams[Content01]": "",
            "ObjParams[Operator02]": "0",
            "ObjParams[Content02]": ""
        }
        try:
            response = requests.post(url, data=payload, headers=headers)
            response.raise_for_status()
            data = response.json()
            if data["Code"] == "1" and "Table" in data["Data"]:
                all_results.extend(data["Data"]["Table"])
        except Exception as e:
            print(f"檢索關鍵字 '{keyword}' 的法令彙編函釋時發生錯誤:{str(e)}")
    if all_results:
        summary = f"<h3>相關法令彙編函釋檢索結果({tax_law} {latest_version}):</h3>"
        unique_results = {}
        for result in all_results:
            tax_sn = result.get('TaxSN', '')
            if tax_sn not in unique_results:
                unique_results[tax_sn] = result
        for index, result in enumerate(list(unique_results.values())[:20]):  # 限制為前20個唯一結果
            summary += f"""
            <details>
                <summary style="cursor: pointer; color: #0066cc;">{result['Title']}</summary>
                <p>{result['Content']}</p>
            </details>
            """
        return summary
    else:
        return "<p>未檢索到相關法令彙編函釋。</p>"

def llm_openai_api(query, answer):
    client = OpenAI(
        api_key=os.environ.get("YOUR_API_TOKEN"),
        base_url="https://api.sambanova.ai/v1",
    )
    user_prompt = f"""
    「題目:{query}
    答案:{answer}
    請詳細分析答案內容後,依據與題目相關性最高的稅目名稱及最多3個重點關鍵字回應我,提供的3個重點關鍵字不能與稅目名稱相同,問題與答案中的稅目名稱列入TaxName,關鍵字列入KeyWord,只須根據格式回應,不要寫其他的。

    # 回應字典格式範例:
    {{"TaxName": "地價稅", "KeyWord": "宿舍用地,醫護人員"}}
    """
    try:
        response = client.chat.completions.create(
            model='Meta-Llama-3.1-405B-Instruct',
            messages=[
                {"role": "system", "content": "Must reply to user in Traditional Chinese."},
                {"role": "user", "content": user_prompt}
            ],
            temperature=0.7,
            top_p=1
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"檢索法令彙編函釋 API Key!Error: {str(e)}")
        gr.Warning(f"檢索法令彙編函釋 API Key 額度不足!!")
        return '{"TaxName": "", "KeyWord": ""}'

def handle_interaction(query, api_key, state):
    gr.Info("開始處理問題,請稍待片刻......")
    start_time = time.time()
    if state is None:
        state = {"history": []}
    if not api_key:
        resend.api_key = os.environ["YOUR_USE_API_KEY"]
        params: resend.Emails.SendParams = {
            "from": "Tax_KM <[email protected]>",
            "to": ["[email protected]"],
            "subject": "地方稅知識庫系統 API KEY",
            "html": f"<strong>查詢內容:<br>{query}</strong>",
        }
        try:
            email_response = resend.Emails.send(params)
            print(f"Email sent successfully. Response:{email_response}")
        except Exception as e:
            print(f"Failed to send email:{str(e)}")
        api_key = os.getenv("YOUR_API_KEY")
    query = convert_punctuation(query)
    answer, insight_questions = answer_multiple_questions(query, api_key)
    questions = split_questions(query)
    if len(questions) == 1:
        api_response = llm_openai_api(query, answer)
        tax_name = ""
        keywords = []
        print(f"LLM剖析:{api_response}")
        try:
            response_dict = eval(api_response)
            tax_name = response_dict.get("TaxName", "")
            keywords = response_dict.get("KeyWord", "").split(",")
        except:
            print("剖析相關法令彙編函釋失敗!!")
            print(f"Tax Law: {tax_law}")
            print(f"Keywords: {keywords}")
        tax_law = get_tax_law(tax_name)
        law_summary_content = fetch_law_summary(tax_law, keywords)
    else:
        law_summary_content = ""
        gr.Info(f"多個問題不會提供法令彙編函釋檢索結果。")
    state["history"].append((query, answer))
    while len(insight_questions) < 3:
        insight_questions.append("提供更多地方稅資訊")
    end_time = time.time()
    gr.Info(f"AI知識庫已答覆,執行時間: {(end_time - start_time):.2f} 秒。")
    return answer, insight_questions[0], insight_questions[1], insight_questions[2], state, query, law_summary_content

def convert_punctuation(text):
    return text.replace('?', '?').replace(',', ',').replace('!', '!').replace(' ', ' ')

def clear_outputs():
    return "", "", gr.update(value="", visible=False)

custom_css = """
.query-input {
    background-color: #B7E0FF !important;
    padding: 15px !important;
    border-radius: 10px !important;
    margin: 0 !important;
}
.query-input textarea {
    font-size: 18px !important;
    background-color: #ffffff;
    border: 1px solid #f0f8ff;
    border-radius: 8px;
}
.answer-box {
    background-color: #FFF5CD !important;
    padding: 10px !important;
    border-radius: 10px !important;
    margin: 0 !important;
}
.answer-box textarea {
    font-size: 18px !important;
    background-color: #ffffff;
    border: 1px solid #f0f8ff;
    border-radius: 8px;
}
.center-text {
    text-align: center !important;
    color: #ff4081;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
    margin-bottom: 0 !important;
}
#submit-btn {
    border-radius: 10px !important;
    border: none !important;
    background-color: #ff4081 !important;
    color: white !important;
    font-weight: bold !important;
    transition: all 0.3s ease !important;
    margin: 0 !important;
}
#submit-btn:hover {
    background-color: #f50057 !important;
    transform: scale(1.05);
}
.insight-btn {
    border-radius: 10px !important;
    border: none !important;
    background-color: #4dd8e2 !important;
}
.insight-btn:hover {
    background-color: #00bcd4 !important;
}
.gr-form {
    background-color: #e8f5e9 !important;
    padding: 15px !important;
    border-radius: 10px !important;
}
.api-key-input {
    background-color: #FFCFB3 !important;
    padding: 15px !important;
    border-radius: 10px !important;
    margin: 0 !important;
}
.text-background {
    font-size: 18px !important;
    padding: 5px !important;
    border-radius: 10px !important;
    border: 2px solid #B7E0FF !important;
    margin: 0 !important;
}
.clear-button {
    color: white !important;
    background-color: #000000 !important;
    padding: 5px !important;
    border-radius: 10px !important;
    margin: 0 !important;
}
.clear-button:hover {
    background-color: #000000 !important;
    transform: scale(1.05);
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as iface:
    gr.Markdown("""
    # 地方稅知識庫系統 - 財政部財政資訊中心
    > ### **※ RAG-based KM 以地方稅極少知識資料作示範,僅供參考,準確資訊請依地方稅稽徵機關回覆為準。系統部署:江信宗,LLM:Llama-3.1-70B。**
    """, elem_classes="center-text")
    with gr.Row():
        query_input = gr.Textbox(label="輸入您的問題,系統將基於學習到的知識資料提供相關答案。", placeholder="請輸入您的問題(支援同時輸入多個問題,例如:問題1?問題2?)", autofocus=True, scale=3, max_lines=5, elem_classes="query-input")
        api_key_input = gr.Textbox(label="請輸入您的 API Key", type="password", placeholder="API authentication key", scale=1, elem_classes="api-key-input")
    answer_output = gr.Textbox(label="知識庫答案", interactive=False, max_lines=40, elem_classes="answer-box")
    with gr.Row():
        insight_q1 = gr.Button("洞察問題 1", visible=False, elem_classes=["insight-btn"])
        insight_q2 = gr.Button("洞察問題 2", visible=False, elem_classes=["insight-btn"])
        insight_q3 = gr.Button("洞察問題 3", visible=False, elem_classes=["insight-btn"])
    state = gr.State()
    current_question = gr.Textbox(lines=2, label="當前問題", visible=False)
    law_summary = gr.HTML(label="法令彙編函釋檢索", elem_classes="text-background", visible=False)
    with gr.Row():
        submit_btn = gr.Button("傳送", variant="primary", scale=3, elem_id="submit-btn")
        clear_button = gr.Button("清除", variant="secondary", scale=1, elem_classes="clear-button")
    gr.HTML(
        """
        <span style="font-size: 18px; color: black;">※ 財政部各稅法令函釋檢索系統:</span><a href="https://ttc.mof.gov.tw/" title="財政部各稅法令函釋檢索系統" style="font-size: 18px; color: red;">https://ttc.mof.gov.tw/</a>
        """
    )
    def update_ui(answer, q1, q2, q3, state, current_q, law_summary):
        return [
            answer,
            gr.update(value=q1, visible=bool(q1)),
            gr.update(value=q2, visible=bool(q2)),
            gr.update(value=q3, visible=bool(q3)),
            state,
            current_q,
            gr.update(value=law_summary, visible=bool(law_summary.strip()))
        ]
    submit_btn.click(
        fn=handle_interaction,
        inputs=[query_input, api_key_input, state],
        outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary]
    ).then(
        fn=update_ui,
        inputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary],
        outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary]
    )
    for btn in [insight_q1, insight_q2, insight_q3]:
        btn.click(
            lambda x: x,
            inputs=[btn],
            outputs=[query_input]
        )
    def clear_outputs():
        return "", "", gr.update(value="", visible=False)
    clear_button.click(
        fn=clear_outputs,
        inputs=[],
        outputs=[query_input, answer_output, law_summary]
    )

if __name__ == "__main__":
    if "SPACE_ID" in os.environ:
        iface.launch()
    else:
        iface.launch(share=True, show_api=False)