Spaces:
Running
Running
title: RAG Interview Agent | |
emoji: π€ | |
colorFrom: blue | |
colorTo: purple | |
sdk: streamlit | |
app_file: app.py | |
pinned: true | |
# RAG-Powered AI Interview Agent | |
An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture. | |
 | |
## π Features | |
- **CV Screening**: Automatic qualification check using semantic similarity | |
- **Smart Interviews**: Context-aware questions generated from job requirements | |
- **Fair Evaluation**: Answers scored against knowledge base | |
- **Detailed Reports**: PDF transcripts with scores and feedback | |
## π οΈ Tech Stack | |
| Component | Technology Used | | |
|--------------------|----------------| | |
| LLM | Meta Llama-3-8B | | |
| Vector Store | FAISS | | |
| Embeddings | Sentence-Transformers | | |
| UI Framework | Streamlit | | |
| CV Parsing | PyPDF2, python-docx | | |
## π¦ Installation | |
```bash | |
# Clone the repository | |
git clone https://huggingface.co/spaces/Jekyll2000/interview_agent | |
cd your-space-name | |
# Install dependencies | |
pip install -r requirements.txt | |
# Set Hugging Face token | |
export HUGGINGFACEHUB_API_TOKEN='your-api-token' | |
# Launch the app | |
streamlit run app.py | |
interview-agent/ | |
βββ app.py # Main application | |
βββ utils/ | |
β βββ cv_processor.py # CV parsing and evaluation | |
β βββ rag_agent.py # Core RAG implementation | |
β βββ evaluator.py # Scoring logic | |
β βββ report_generator.py# PDF report creation | |
βββ data/ # Job requirements and interviews | |
βββ requirements.txt # Python dependencies | |