interview_agent / README.md
Jekyll2000's picture
Update README.md
8264c3e verified
---
title: RAG Interview Agent
emoji: πŸ€–
colorFrom: blue
colorTo: purple
sdk: streamlit
app_file: app.py
pinned: true
---
# RAG-Powered AI Interview Agent
An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture.
![Demo](https://i.imgur.com/JQ9w5bG.gif)
## πŸš€ Features
- **CV Screening**: Automatic qualification check using semantic similarity
- **Smart Interviews**: Context-aware questions generated from job requirements
- **Fair Evaluation**: Answers scored against knowledge base
- **Detailed Reports**: PDF transcripts with scores and feedback
## πŸ› οΈ Tech Stack
| Component | Technology Used |
|--------------------|----------------|
| LLM | Meta Llama-3-8B |
| Vector Store | FAISS |
| Embeddings | Sentence-Transformers |
| UI Framework | Streamlit |
| CV Parsing | PyPDF2, python-docx |
## πŸ“¦ Installation
```bash
# Clone the repository
git clone https://huggingface.co/spaces/Jekyll2000/interview_agent
cd your-space-name
# Install dependencies
pip install -r requirements.txt
# Set Hugging Face token
export HUGGINGFACEHUB_API_TOKEN='your-api-token'
# Launch the app
streamlit run app.py
interview-agent/
β”œβ”€β”€ app.py # Main application
β”œβ”€β”€ utils/
β”‚ β”œβ”€β”€ cv_processor.py # CV parsing and evaluation
β”‚ β”œβ”€β”€ rag_agent.py # Core RAG implementation
β”‚ β”œβ”€β”€ evaluator.py # Scoring logic
β”‚ └── report_generator.py# PDF report creation
β”œβ”€β”€ data/ # Job requirements and interviews
└── requirements.txt # Python dependencies