Spaces:
Running
Running
File size: 1,698 Bytes
429a22b 643b1cb b004661 643b1cb b004661 49cbd29 643b1cb 49cbd29 643b1cb 429a22b 643b1cb 429a22b 643b1cb 429a22b 643b1cb 26b1128 643b1cb 26b1128 8264c3e 26b1128 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
title: RAG Interview Agent
emoji: π€
colorFrom: blue
colorTo: purple
sdk: streamlit
app_file: app.py
pinned: true
---
# RAG-Powered AI Interview Agent
An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture.

## π Features
- **CV Screening**: Automatic qualification check using semantic similarity
- **Smart Interviews**: Context-aware questions generated from job requirements
- **Fair Evaluation**: Answers scored against knowledge base
- **Detailed Reports**: PDF transcripts with scores and feedback
## π οΈ Tech Stack
| Component | Technology Used |
|--------------------|----------------|
| LLM | Meta Llama-3-8B |
| Vector Store | FAISS |
| Embeddings | Sentence-Transformers |
| UI Framework | Streamlit |
| CV Parsing | PyPDF2, python-docx |
## π¦ Installation
```bash
# Clone the repository
git clone https://huggingface.co/spaces/Jekyll2000/interview_agent
cd your-space-name
# Install dependencies
pip install -r requirements.txt
# Set Hugging Face token
export HUGGINGFACEHUB_API_TOKEN='your-api-token'
# Launch the app
streamlit run app.py
interview-agent/
βββ app.py # Main application
βββ utils/
β βββ cv_processor.py # CV parsing and evaluation
β βββ rag_agent.py # Core RAG implementation
β βββ evaluator.py # Scoring logic
β βββ report_generator.py# PDF report creation
βββ data/ # Job requirements and interviews
βββ requirements.txt # Python dependencies
|