Jekyll2000 commited on
Commit
643b1cb
Β·
verified Β·
1 Parent(s): 858e0f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -19
README.md CHANGED
@@ -1,31 +1,48 @@
1
  ---
2
- title: AI Interview Agent
3
  emoji: πŸ€–
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: streamlit
7
  app_file: app.py
8
- pinned: false
9
  ---
10
 
11
- # AI Interview Agent
12
 
13
- ## Features
14
- - **CV Screening**: Automatically evaluates qualifications
15
- - **Smart Interviews**: Role-specific questions with Llama-3
16
- - **Detailed Feedback**: Band scoring system (1-5 stars)
17
- - **PDF Reports**: Downloadable interview transcripts
18
 
19
- ## How to Use
20
- 1. Select a job role
21
- 2. Upload your CV (PDF/DOCX)
22
- 3. Complete the AI interview
23
- 4. Receive your evaluation report
24
 
25
- ## Technology
26
- - **LLM**: Meta Llama-3-8B
27
- - **Framework**: LangChain
28
- - **Vector Store**: FAISS
29
- - **UI**: Streamlit
30
 
31
- [![Open in Spaces](https://img.shields.io/badge/πŸ€—-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/Jekyll2000/interview_agent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: RAG Interview Agent
3
  emoji: πŸ€–
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: streamlit
7
  app_file: app.py
8
+ pinned: true
9
  ---
10
 
11
+ # RAG-Powered AI Interview Agent
12
 
13
+ An intelligent interview assistant that evaluates candidates using pure Retrieval-Augmented Generation (RAG) architecture.
 
 
 
 
14
 
15
+ ![Demo](https://i.imgur.com/JQ9w5bG.gif)
 
 
 
 
16
 
17
+ ## πŸš€ Features
 
 
 
 
18
 
19
+ - **CV Screening**: Automatic qualification check using semantic similarity
20
+ - **Smart Interviews**: Context-aware questions generated from job requirements
21
+ - **Fair Evaluation**: Answers scored against knowledge base
22
+ - **Detailed Reports**: PDF transcripts with scores and feedback
23
+
24
+ ## πŸ› οΈ Tech Stack
25
+
26
+ | Component | Technology Used |
27
+ |--------------------|----------------|
28
+ | LLM | Meta Llama-3-8B |
29
+ | Vector Store | FAISS |
30
+ | Embeddings | Sentence-Transformers |
31
+ | UI Framework | Streamlit |
32
+ | CV Parsing | PyPDF2, python-docx |
33
+
34
+ ## πŸ“¦ Installation
35
+
36
+ ```bash
37
+ # Clone the repository
38
+ git clone https://huggingface.co/spaces/your-username/your-space-name
39
+ cd your-space-name
40
+
41
+ # Install dependencies
42
+ pip install -r requirements.txt
43
+
44
+ # Set Hugging Face token
45
+ export HUGGINGFACEHUB_API_TOKEN='your-api-token'
46
+
47
+ # Launch the app
48
+ streamlit run app.py