File size: 5,614 Bytes
6a671c6
 
 
500f371
4bde338
5ef5e82
 
63666ab
bc54a0a
5ef5e82
 
 
 
 
 
 
effb607
5ef5e82
 
 
 
 
 
 
0f5b4d0
5ef5e82
 
 
 
 
 
 
 
 
 
 
 
 
bc54a0a
f9815f3
aca2296
 
ccfd058
aca2296
 
 
5ef5e82
 
 
 
 
 
bc54a0a
5ef5e82
 
 
effb607
f9815f3
5ef5e82
f9815f3
 
 
ccfd058
f9815f3
 
effb607
 
 
 
f9815f3
 
4bde338
 
effb607
 
f9815f3
 
 
ccfd058
f9815f3
 
4bde338
 
 
 
 
 
 
 
 
5ef5e82
effb607
 
 
 
 
 
 
 
 
 
 
 
ccfd058
 
4bde338
ccfd058
 
 
 
8166fea
ccfd058
 
 
 
 
 
 
5ef5e82
 
 
 
 
 
 
 
ccfd058
 
 
 
5ef5e82
 
 
effb607
 
f9815f3
5ef5e82
 
4bde338
5ef5e82
834a27f
 
5ef5e82
f105810
5ef5e82
 
 
 
 
effb607
b6515bb
5ef5e82
 
 
 
 
 
ccfd058
5ef5e82
 
 
 
 
 
 
 
ccfd058
5ef5e82
bc54a0a
5ef5e82
 
 
 
 
 
8607e04
cdc830d
d8bd84f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""

import os
import time
import uuid
from typing import List, Tuple, Optional, Union

import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

# Cargar las variables de entorno desde el archivo .env
load_dotenv()

# Verificar la clave de API
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY is not set in environment variables.")

IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]

def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    if image:
        image_height = int(image.height * IMAGE_WIDTH / image.width)
        return image.resize((IMAGE_WIDTH, image_height))

def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path

def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image_preview = preprocess_image(image)
        if image_preview:
            # Display a preview of the uploaded image
            gr.Image(image_preview).render()
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot

def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot

def bot(
    files: Optional[List[str]],
    model_choice: str,
    system_instruction: str,  # Instrucción del sistema extraída directamente
    chatbot: CHAT_HISTORY
):
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY is not set.")

    # Configurar la API con la clave
    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=0.7,
        max_output_tokens=8192,
        top_k=10,
        top_p=0.9
    )

    text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
    image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []

    # Usar la instrucción del sistema si está presente
    model = genai.GenerativeModel(
        model_name=model_choice,
        generation_config=generation_config,
        system_instruction=system_instruction if system_instruction else None
    )

    response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot

# Componente para la instrucción del sistema dentro de un desplegable
system_instruction_dropdown = gr.Dropdown(
    choices=[
        "Keep responses concise and professional.",
        "Use a friendly and engaging tone.",
        "Focus on technical explanations.",
        "Encourage creative ideas.",
        "Simplify complex concepts for a beginner audience."
    ],
    label="System Instruction",
    placeholder="Select or leave empty",
    scale=2
)

# Definir los componentes de entrada y salida
chatbot_component = gr.Chatbot(
    label='Gemini',
    bubble_full_width=False,
    scale=2,
    height=300
)
text_prompt_component = gr.Textbox(
    placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
    choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
    value="gemini-1.5-flash",
    label="Select Model",
    scale=2
)

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    upload_button_component,
    model_choice_component,
    system_instruction_dropdown,  # Desplegable de System Instruction
    chatbot_component
]

# Definir la interfaz de usuario
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        model_choice_component.render()
        chatbot_component.render()
        with gr.Row():
            text_prompt_component.render()
            upload_button_component.render()
            run_button_component.render()
        system_instruction_dropdown.render()  # Agregar desplegable para System Instruction

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    upload_button_component.upload(
        fn=upload,
        inputs=[upload_button_component, chatbot_component],
        outputs=[chatbot_component],
        queue=False
    )

# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)