File size: 4,675 Bytes
aab0a9b
 
 
 
c3fc9c2
aab0a9b
c3fc9c2
 
 
aab0a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fc9c2
aab0a9b
 
c3fc9c2
aab0a9b
 
c3fc9c2
aab0a9b
 
c3fc9c2
aab0a9b
 
c3fc9c2
aab0a9b
 
c3fc9c2
aab0a9b
 
c3fc9c2
 
349a356
 
 
 
 
 
 
 
922de0b
ddc92c4
922de0b
 
349a356
 
c3fc9c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aab0a9b
 
 
 
 
 
c3fc9c2
 
 
 
 
aab0a9b
c3fc9c2
aab0a9b
 
 
 
c3fc9c2
aab0a9b
 
 
 
 
 
 
 
c3fc9c2
aab0a9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import yfinance as yf
from backtesting import Backtest
import pandas as pd
import random
import os

from multiprocessing import Pool
from itertools import repeat
import time
from strategies import SMC_test, SMC_ema, SMCStructure

def fetch(symbol, period, interval):
    df = yf.download(symbol, period=period, interval=interval)
    df.columns =df.columns.get_level_values(0)
    return df

def smc_plot_backtest(data, filename, swing_hl, **kwargs):
    bt = Backtest(data, SMC_test, **kwargs)
    bt.run(swing_window=swing_hl)
    return bt.plot(filename=filename, open_browser=False)

def smc_ema_plot_backtest(data, filename, ema1, ema2, closecross, **kwargs):
    bt = Backtest(data, SMC_ema, **kwargs)
    bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
    return bt.plot(filename=filename, open_browser=False)

def smc_structure_plot_backtest(data, filename, swing_hl, **kwargs):
    bt = Backtest(data, SMCStructure, **kwargs)
    bt.run(swing_window=swing_hl)
    return bt.plot(filename=filename, open_browser=False)

def smc_backtest(data, filename, swing_hl, **kwargs):
    bt = Backtest(data, SMC_test, **kwargs)
    results = bt.run(swing_window=swing_hl)
    bt.plot(filename=filename, open_browser=False)
    return results

def smc_ema_backtest(data, filename, ema1, ema2, closecross, **kwargs):
    bt = Backtest(data, SMC_ema, **kwargs)
    results = bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
    bt.plot(filename=filename, open_browser=False)
    return results

def smc_structure_backtest(data, filename, swing_hl, **kwargs):
    bt = Backtest(data, SMCStructure, **kwargs)
    results = bt.run(swing_window=swing_hl)
    bt.plot(filename=filename, open_browser=False)
    return results

def run_strategy(ticker_symbol, strategy, period, interval, kwargs):
    # Fetching ohlc of random ticker_symbol.
    retries = 3
    for i in range(retries):
        try:
            data = fetch(ticker_symbol, period, interval)
        except:
            raise Exception(f"{ticker_symbol} data fetch failed")

        if len(data) == 0:
            if i < retries - 1:
                print(f"Attempt{i + 1}: {ticker_symbol} ohlc is empty")
            else:
                raise Exception(f"{ticker_symbol} ohlc is empty")
        else:
            break

    filename = f'{ticker_symbol}.html'

    if strategy == "Order Block":
        backtest_results = smc_backtest(data, filename, kwargs['swing_hl'])
    elif strategy == "Order Block with EMA":
        backtest_results = smc_ema_backtest(data, filename, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
    elif strategy == "Structure trading":
        backtest_results = smc_structure_backtest(data, filename, kwargs['swing_hl'])
    else:
        raise Exception('Strategy not found')

    with open(filename, 'r', encoding='utf-8') as f:
        plot = f.read()

    os.remove(filename)

    # Converting pd.Series to pd.Dataframe
    backtest_results = backtest_results.to_frame().transpose()

    backtest_results['stock'] = ticker_symbol
    backtest_results['plot'] = plot

    # Reordering columns.
    # cols = df.columns.tolist()
    # cols = cols[-1:] + cols[:-1]
    cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades',
            'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
    backtest_results = backtest_results[cols]

    return backtest_results

def complete_test(strategy: str, period: str, interval: str, multiprocess=True, **kwargs):
    nifty50 = pd.read_csv("data/ind_nifty50list.csv")
    ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")

    # Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
    nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])

    if multiprocess:
        with Pool() as p:
            result = p.starmap(run_strategy, zip(nifty50['YahooEquiv'].values, repeat(strategy), repeat(period), repeat(interval), repeat(kwargs)))
    else:
        result = [run_strategy(nifty50['YahooEquiv'].values[i], strategy, period, interval, kwargs) for i in range(len(nifty50))]

    df = pd.concat(result)

    df['plot'] = df['plot'].astype(str)
    df = df.sort_values(by=['Return [%]'], ascending=False)

    return df.reset_index().drop(columns=['index'])


if __name__ == "__main__":
    # random_testing("")
    # data = fetch('RELIANCE.NS', period='1y', interval='15m')
    # df = yf.download('RELIANCE.NS', period='1yr', interval='15m')

    rt = complete_test("Order Block", '1mo', '15m', swing_hl=20)
    rt.to_excel('test/all_testing_2.xlsx', index=False)
    print(rt)