Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +10 -6
- page/complete_backtest.py +71 -0
- page/single_backtest.py +112 -0
- utils.py +54 -42
app.py
CHANGED
|
@@ -1,11 +1,15 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
complete_test = st.Page("
|
| 8 |
|
| 9 |
-
pg = st.navigation([
|
| 10 |
|
| 11 |
-
pg.run()
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
+
def app():
|
| 4 |
+
st.set_page_config(page_title="Algorithmic Trading Dashboard", layout="wide", initial_sidebar_state="auto",
|
| 5 |
+
menu_items=None, page_icon=":chart_with_upwards_trend:")
|
| 6 |
|
| 7 |
+
single_test = st.Page("page/single_backtest.py", title="Run Strategy")
|
| 8 |
+
complete_test = st.Page("page/complete_backtest.py", title="Evaluate Strategy")
|
| 9 |
|
| 10 |
+
pg = st.navigation({'Algorithmic Trading Dashboard':[single_test, complete_test]})
|
| 11 |
|
| 12 |
+
pg.run()
|
| 13 |
+
|
| 14 |
+
if __name__ == "__main__":
|
| 15 |
+
app()
|
page/complete_backtest.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
# sys.path.append(r"D:\code\algotrading\backtesting")
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import time
|
| 7 |
+
from streamlit.components import v1 as components
|
| 8 |
+
from utils import complete_test
|
| 9 |
+
|
| 10 |
+
def complete_backtest():
|
| 11 |
+
st.markdown(
|
| 12 |
+
"""
|
| 13 |
+
# Algorithmic Trading Dashboard
|
| 14 |
+
## Evaluate Strategy
|
| 15 |
+
"""
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
limits = pd.read_csv('data/yahoo_limits.csv')
|
| 19 |
+
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
|
| 20 |
+
|
| 21 |
+
c1, c2 = st.columns(2)
|
| 22 |
+
with c1:
|
| 23 |
+
# Select strategy
|
| 24 |
+
strategy = st.selectbox("Select Strategy", ['Order Block', 'Order Block with EMA', 'Structure trading'], index=2)
|
| 25 |
+
with c2:
|
| 26 |
+
# Swing High/Low window size
|
| 27 |
+
swing_hl = st.number_input("Swing High/Low Window Size", min_value=1, value=10)
|
| 28 |
+
|
| 29 |
+
c1, c2 = st.columns(2)
|
| 30 |
+
with c1:
|
| 31 |
+
# Select interval
|
| 32 |
+
interval = st.selectbox("Select Interval", limits['interval'].tolist(), index=3)
|
| 33 |
+
with c2:
|
| 34 |
+
# Update period options based on interval
|
| 35 |
+
limit = limits[limits['interval'] == interval]['limit'].values[0]
|
| 36 |
+
idx = period_list.index(limit)
|
| 37 |
+
period_options = period_list[:idx + 1] + ['max']
|
| 38 |
+
period = st.selectbox("Select Period", period_options, index=3)
|
| 39 |
+
|
| 40 |
+
# EMA parameters if "Order Block with EMA" is selected
|
| 41 |
+
if strategy == "Order Block with EMA":
|
| 42 |
+
c1, c2, c3 = st.columns(3)
|
| 43 |
+
with c1:
|
| 44 |
+
ema1 = st.number_input("Fast EMA Length", min_value=1, value=9)
|
| 45 |
+
with c2:
|
| 46 |
+
ema2 = st.number_input("Slow EMA Length", min_value=1, value=21)
|
| 47 |
+
with c3:
|
| 48 |
+
cross_close = st.checkbox("Close trade on EMA crossover", value=False)
|
| 49 |
+
else:
|
| 50 |
+
ema1, ema2, cross_close = None, None, None
|
| 51 |
+
|
| 52 |
+
multiprocess = st.checkbox("Multiprocess", value=True)
|
| 53 |
+
|
| 54 |
+
# Button to run the analysis
|
| 55 |
+
if st.button("Run"):
|
| 56 |
+
start = time.time()
|
| 57 |
+
st.session_state.results = complete_test(strategy, period, interval, multiprocess, swing_hl=swing_hl, ema1=ema1, ema2=ema2, cross_close=cross_close)
|
| 58 |
+
# st.write(f"Analysis finished in {time.strftime("%Hh%Mm%Ss", time.gmtime(time.time()-start))}")
|
| 59 |
+
st.success(f"Analysis finished in {round(time.time()-start, 2)} seconds")
|
| 60 |
+
|
| 61 |
+
if "results" in st.session_state:
|
| 62 |
+
st.write("⬇️ Select a row in index column to get detailed information of the respective stock run.")
|
| 63 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
|
| 64 |
+
df = st.dataframe(st.session_state.results, hide_index=True, column_order=cols, on_select="rerun", selection_mode="single-row")
|
| 65 |
+
df.selection.rows = 1
|
| 66 |
+
if df.selection.rows:
|
| 67 |
+
row = df.selection.rows
|
| 68 |
+
plot = st.session_state.results['plot'].values[row]
|
| 69 |
+
components.html(plot[0], height=1067)
|
| 70 |
+
|
| 71 |
+
complete_backtest()
|
page/single_backtest.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
from bokeh.io import output_file, save
|
| 6 |
+
from bokeh.plotting import figure
|
| 7 |
+
from streamlit.components import v1 as components
|
| 8 |
+
|
| 9 |
+
from indicators import SMC
|
| 10 |
+
from utils import fetch, smc_plot_backtest, smc_ema_plot_backtest, smc_structure_plot_backtest
|
| 11 |
+
|
| 12 |
+
def use_file_for_bokeh(chart: figure, chart_height=1067):
|
| 13 |
+
# Function used to replace st.boken_chart, because streamlit doesn't support bokeh v3
|
| 14 |
+
file_name = f'bokeh_graph_{random.getrandbits(8)}.html'
|
| 15 |
+
output_file(file_name)
|
| 16 |
+
save(chart)
|
| 17 |
+
with open(file_name, 'r', encoding='utf-8') as f:
|
| 18 |
+
html = f.read()
|
| 19 |
+
os.remove(file_name)
|
| 20 |
+
components.html(html, height=chart_height)
|
| 21 |
+
|
| 22 |
+
st.bokeh_chart = use_file_for_bokeh
|
| 23 |
+
|
| 24 |
+
def algorithmic_trading_dashboard():
|
| 25 |
+
# Load data
|
| 26 |
+
symbols = pd.read_csv('data/Ticker_List_NSE_India.csv')
|
| 27 |
+
limits = pd.read_csv('data/yahoo_limits.csv')
|
| 28 |
+
|
| 29 |
+
# Dropdown options
|
| 30 |
+
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
|
| 31 |
+
|
| 32 |
+
st.markdown(
|
| 33 |
+
"""
|
| 34 |
+
# Algorithmic Trading Dashboard
|
| 35 |
+
## Run Strategy
|
| 36 |
+
"""
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Input fields on the main page
|
| 40 |
+
|
| 41 |
+
# Select stock
|
| 42 |
+
stock = st.selectbox("Select Company", symbols['NAME OF COMPANY'].unique(), index=None)
|
| 43 |
+
|
| 44 |
+
c1, c2 = st.columns(2)
|
| 45 |
+
|
| 46 |
+
with c1:
|
| 47 |
+
# Select interval
|
| 48 |
+
interval = st.selectbox("Select Interval", limits['interval'].tolist(), index=3)
|
| 49 |
+
|
| 50 |
+
with c2:
|
| 51 |
+
# Update period options based on interval
|
| 52 |
+
limit = limits[limits['interval'] == interval]['limit'].values[0]
|
| 53 |
+
idx = period_list.index(limit)
|
| 54 |
+
period_options = period_list[:idx + 1] + ['max']
|
| 55 |
+
period = st.selectbox("Select Period", period_options, index=3)
|
| 56 |
+
|
| 57 |
+
c1, c2 = st.columns(2)
|
| 58 |
+
|
| 59 |
+
with c1:
|
| 60 |
+
# Select strategy
|
| 61 |
+
strategy = st.selectbox("Select Strategy", ['Order Block', 'Order Block with EMA', 'Structure trading'], index=2)
|
| 62 |
+
|
| 63 |
+
with c2:
|
| 64 |
+
# Swing High/Low window size
|
| 65 |
+
swing_hl = st.number_input("Swing High/Low Window Size", min_value=1, value=10)
|
| 66 |
+
|
| 67 |
+
# EMA parameters if "Order Block with EMA" is selected
|
| 68 |
+
if strategy == "Order Block with EMA":
|
| 69 |
+
c1, c2, c3 = st.columns(3)
|
| 70 |
+
with c1:
|
| 71 |
+
ema1 = st.number_input("Fast EMA Length", min_value=1, value=9)
|
| 72 |
+
with c2:
|
| 73 |
+
ema2 = st.number_input("Slow EMA Length", min_value=1, value=21)
|
| 74 |
+
with c3:
|
| 75 |
+
cross_close = st.checkbox("Close trade on EMA crossover", value=False)
|
| 76 |
+
|
| 77 |
+
# Button to run the analysis
|
| 78 |
+
if st.button("Run"):
|
| 79 |
+
# Fetch ticker data
|
| 80 |
+
ticker = symbols[symbols['NAME OF COMPANY'] == stock]['YahooEquiv'].values[0]
|
| 81 |
+
data = fetch(ticker, period, interval)
|
| 82 |
+
|
| 83 |
+
# Generate signal plot based on strategy
|
| 84 |
+
if strategy == "Order Block" or strategy == "Order Block with EMA":
|
| 85 |
+
signal_plot = (
|
| 86 |
+
SMC(data=data, swing_hl_window_sz=swing_hl)
|
| 87 |
+
.plot(order_blocks=True, swing_hl=True, show=False)
|
| 88 |
+
.update_layout(title=dict(text=ticker))
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
signal_plot = (
|
| 92 |
+
SMC(data=data, swing_hl_window_sz=swing_hl)
|
| 93 |
+
.plot(swing_hl_v2=True, structure=True, show=False)
|
| 94 |
+
.update_layout(title=dict(text=ticker))
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Generate backtest plot
|
| 98 |
+
if strategy == "Order Block":
|
| 99 |
+
backtest_plot = smc_plot_backtest(data, 'test.html', swing_hl)
|
| 100 |
+
elif strategy == "Order Block with EMA":
|
| 101 |
+
backtest_plot = smc_ema_plot_backtest(data, 'test.html', ema1, ema2, cross_close)
|
| 102 |
+
elif strategy == "Structure trading":
|
| 103 |
+
backtest_plot = smc_structure_plot_backtest(data, 'test.html', swing_hl)
|
| 104 |
+
|
| 105 |
+
# Display plots
|
| 106 |
+
st.write("### Signal Plot")
|
| 107 |
+
st.plotly_chart(signal_plot, width=1200)
|
| 108 |
+
|
| 109 |
+
st.write("### Backtesting Plot")
|
| 110 |
+
st.bokeh_chart(backtest_plot)
|
| 111 |
+
|
| 112 |
+
algorithmic_trading_dashboard()
|
utils.py
CHANGED
|
@@ -2,7 +2,11 @@ import yfinance as yf
|
|
| 2 |
from backtesting import Backtest
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
from strategies import SMC_test, SMC_ema, SMCStructure
|
| 7 |
|
| 8 |
def fetch(symbol, period, interval):
|
|
@@ -25,24 +29,59 @@ def smc_structure_plot_backtest(data, filename, swing_hl, **kwargs):
|
|
| 25 |
bt.run(swing_window=swing_hl)
|
| 26 |
return bt.plot(filename=filename, open_browser=False)
|
| 27 |
|
| 28 |
-
def smc_backtest(data, swing_hl, **kwargs):
|
| 29 |
bt = Backtest(data, SMC_test, **kwargs)
|
| 30 |
results = bt.run(swing_window=swing_hl)
|
| 31 |
-
bt.plot(filename=
|
| 32 |
return results
|
| 33 |
|
| 34 |
-
def smc_ema_backtest(data, ema1, ema2, closecross, **kwargs):
|
| 35 |
bt = Backtest(data, SMC_ema, **kwargs)
|
| 36 |
results = bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
|
| 37 |
-
bt.plot(filename=
|
| 38 |
return results
|
| 39 |
|
| 40 |
-
def smc_structure_backtest(data, swing_hl, **kwargs):
|
| 41 |
bt = Backtest(data, SMCStructure, **kwargs)
|
| 42 |
results = bt.run(swing_window=swing_hl)
|
| 43 |
-
bt.plot(filename=
|
| 44 |
return results
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5, **kwargs):
|
| 47 |
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
| 48 |
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
|
@@ -89,52 +128,25 @@ def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5
|
|
| 89 |
|
| 90 |
return df
|
| 91 |
|
| 92 |
-
def complete_test(strategy: str, period: str, interval: str, **kwargs):
|
| 93 |
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
| 94 |
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
| 95 |
|
| 96 |
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
| 97 |
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
ticker_symbol = nifty50['YahooEquiv'].values[i]
|
| 106 |
-
data = fetch(ticker_symbol, period, interval)
|
| 107 |
-
|
| 108 |
-
if strategy == "Order Block":
|
| 109 |
-
backtest_results = smc_backtest(data, kwargs['swing_hl'])
|
| 110 |
-
elif strategy == "Order Block with EMA":
|
| 111 |
-
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
| 112 |
-
elif strategy == "Structure trading":
|
| 113 |
-
backtest_results = smc_structure_backtest(data, kwargs['swing_hl'])
|
| 114 |
-
else:
|
| 115 |
-
raise Exception('Strategy not found')
|
| 116 |
-
|
| 117 |
-
with open("bokeh_graph.html", 'r', encoding='utf-8') as f:
|
| 118 |
-
plot = f.read()
|
| 119 |
-
|
| 120 |
-
# Converting pd.Series to pd.Dataframe
|
| 121 |
-
backtest_results = backtest_results.to_frame().transpose()
|
| 122 |
-
|
| 123 |
-
backtest_results['stock'] = ticker_symbol
|
| 124 |
-
backtest_results['plot'] = plot
|
| 125 |
-
|
| 126 |
-
# Reordering columns.
|
| 127 |
-
# cols = df.columns.tolist()
|
| 128 |
-
# cols = cols[-1:] + cols[:-1]
|
| 129 |
-
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
|
| 130 |
-
backtest_results = backtest_results[cols]
|
| 131 |
-
|
| 132 |
-
df = pd.concat([df, backtest_results])
|
| 133 |
|
| 134 |
df['plot'] = df['plot'].astype(str)
|
| 135 |
df = df.sort_values(by=['Return [%]'], ascending=False)
|
| 136 |
|
| 137 |
-
return df
|
| 138 |
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
|
@@ -143,5 +155,5 @@ if __name__ == "__main__":
|
|
| 143 |
# df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
|
| 144 |
|
| 145 |
rt = complete_test("Order Block", '1mo', '15m', swing_hl=20)
|
| 146 |
-
rt.to_excel('test/
|
| 147 |
print(rt)
|
|
|
|
| 2 |
from backtesting import Backtest
|
| 3 |
import pandas as pd
|
| 4 |
import random
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
from multiprocessing import Pool
|
| 8 |
+
from itertools import repeat
|
| 9 |
+
import time
|
| 10 |
from strategies import SMC_test, SMC_ema, SMCStructure
|
| 11 |
|
| 12 |
def fetch(symbol, period, interval):
|
|
|
|
| 29 |
bt.run(swing_window=swing_hl)
|
| 30 |
return bt.plot(filename=filename, open_browser=False)
|
| 31 |
|
| 32 |
+
def smc_backtest(data, filename, swing_hl, **kwargs):
|
| 33 |
bt = Backtest(data, SMC_test, **kwargs)
|
| 34 |
results = bt.run(swing_window=swing_hl)
|
| 35 |
+
bt.plot(filename=filename, open_browser=False)
|
| 36 |
return results
|
| 37 |
|
| 38 |
+
def smc_ema_backtest(data, filename, ema1, ema2, closecross, **kwargs):
|
| 39 |
bt = Backtest(data, SMC_ema, **kwargs)
|
| 40 |
results = bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
|
| 41 |
+
bt.plot(filename=filename, open_browser=False)
|
| 42 |
return results
|
| 43 |
|
| 44 |
+
def smc_structure_backtest(data, filename, swing_hl, **kwargs):
|
| 45 |
bt = Backtest(data, SMCStructure, **kwargs)
|
| 46 |
results = bt.run(swing_window=swing_hl)
|
| 47 |
+
bt.plot(filename=filename, open_browser=False)
|
| 48 |
return results
|
| 49 |
|
| 50 |
+
def run_strategy(ticker_symbol, strategy, period, interval, kwargs):
|
| 51 |
+
# Fetching ohlc of random ticker_symbol.
|
| 52 |
+
data = fetch(ticker_symbol, period, interval)
|
| 53 |
+
|
| 54 |
+
filename = f'{ticker_symbol}.html'
|
| 55 |
+
|
| 56 |
+
if strategy == "Order Block":
|
| 57 |
+
backtest_results = smc_backtest(data, filename, kwargs['swing_hl'])
|
| 58 |
+
elif strategy == "Order Block with EMA":
|
| 59 |
+
backtest_results = smc_ema_backtest(data, filename, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
| 60 |
+
elif strategy == "Structure trading":
|
| 61 |
+
backtest_results = smc_structure_backtest(data, filename, kwargs['swing_hl'])
|
| 62 |
+
else:
|
| 63 |
+
raise Exception('Strategy not found')
|
| 64 |
+
|
| 65 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 66 |
+
plot = f.read()
|
| 67 |
+
|
| 68 |
+
os.remove(filename)
|
| 69 |
+
|
| 70 |
+
# Converting pd.Series to pd.Dataframe
|
| 71 |
+
backtest_results = backtest_results.to_frame().transpose()
|
| 72 |
+
|
| 73 |
+
backtest_results['stock'] = ticker_symbol
|
| 74 |
+
backtest_results['plot'] = plot
|
| 75 |
+
|
| 76 |
+
# Reordering columns.
|
| 77 |
+
# cols = df.columns.tolist()
|
| 78 |
+
# cols = cols[-1:] + cols[:-1]
|
| 79 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades',
|
| 80 |
+
'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
|
| 81 |
+
backtest_results = backtest_results[cols]
|
| 82 |
+
|
| 83 |
+
return backtest_results
|
| 84 |
+
|
| 85 |
def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5, **kwargs):
|
| 86 |
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
| 87 |
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
|
|
|
| 128 |
|
| 129 |
return df
|
| 130 |
|
| 131 |
+
def complete_test(strategy: str, period: str, interval: str, multiprocess=True, **kwargs):
|
| 132 |
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
| 133 |
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
| 134 |
|
| 135 |
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
| 136 |
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
| 137 |
|
| 138 |
+
if multiprocess:
|
| 139 |
+
with Pool() as p:
|
| 140 |
+
result = p.starmap(run_strategy, zip(nifty50['YahooEquiv'].values, repeat(strategy), repeat(period), repeat(interval), repeat(kwargs)))
|
| 141 |
+
else:
|
| 142 |
+
result = [run_strategy(nifty50['YahooEquiv'].values[i], strategy, period, interval, kwargs) for i in range(len(nifty50))]
|
| 143 |
|
| 144 |
+
df = pd.concat(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
df['plot'] = df['plot'].astype(str)
|
| 147 |
df = df.sort_values(by=['Return [%]'], ascending=False)
|
| 148 |
|
| 149 |
+
return df.reset_index().drop(columns=['index'])
|
| 150 |
|
| 151 |
|
| 152 |
if __name__ == "__main__":
|
|
|
|
| 155 |
# df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
|
| 156 |
|
| 157 |
rt = complete_test("Order Block", '1mo', '15m', swing_hl=20)
|
| 158 |
+
rt.to_excel('test/all_testing_2.xlsx', index=False)
|
| 159 |
print(rt)
|