Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +99 -0
- data/Ticker_List_NSE_India.csv +0 -0
- data/ind_nifty50list.csv +52 -0
- data/yahoo_limits.csv +12 -0
- indicators.py +630 -0
- pages/complete_backtest.py +55 -0
- pages/dashboard.py +106 -0
- requirements.txt +8 -0
- strategies.py +165 -0
- streamlit_app.py +11 -0
- utils.py +147 -0
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from indicators import SMC
|
3 |
+
from utils import smc_plot_backtest, smc_ema_plot_backtest, smc_structure_plot_backtest, fetch
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
symbols = pd.read_csv('data/Ticker_List_NSE_India.csv')
|
7 |
+
limits = pd.read_csv('data/yahoo_limits.csv')
|
8 |
+
|
9 |
+
def run(stock, interval, period, strategy, swing_hl, ema1=9, ema2=21, cross_close=False):
|
10 |
+
# Downloading ticker data.
|
11 |
+
ticker = symbols[symbols['NAME OF COMPANY'] == stock]['YahooEquiv'].values[0]
|
12 |
+
data = fetch(ticker, period, interval)
|
13 |
+
|
14 |
+
# Plotting signal plot based on strategy.
|
15 |
+
if strategy == "Order Block" or strategy == "Order Block with EMA":
|
16 |
+
signal_plot = (SMC(data=data, swing_hl_window_sz=swing_hl).
|
17 |
+
plot(order_blocks=True, swing_hl=True, show=False).
|
18 |
+
update_layout(title=dict(text=ticker)))
|
19 |
+
else:
|
20 |
+
signal_plot = (SMC(data=data, swing_hl_window_sz=swing_hl).
|
21 |
+
plot(swing_hl_v2=True, structure=True, show=False).
|
22 |
+
update_layout(title=dict(text=ticker)))
|
23 |
+
|
24 |
+
backtest_plot = gr.Plot()
|
25 |
+
|
26 |
+
# Plotting backtest plot based on strategy.
|
27 |
+
if strategy == "Order Block":
|
28 |
+
backtest_plot = smc_plot_backtest(data, 'test.html', swing_hl)
|
29 |
+
if strategy == "Order Block with EMA":
|
30 |
+
backtest_plot = smc_ema_plot_backtest(data, 'test.html', ema1, ema2, cross_close)
|
31 |
+
if strategy == "Structure trading":
|
32 |
+
backtest_plot = smc_structure_plot_backtest(data, 'test.html', swing_hl)
|
33 |
+
|
34 |
+
return signal_plot, backtest_plot
|
35 |
+
|
36 |
+
|
37 |
+
with gr.Blocks(fill_width=True) as app:
|
38 |
+
gr.Markdown(
|
39 |
+
'# Algorithmic Trading Dashboard'
|
40 |
+
)
|
41 |
+
stock = gr.Dropdown(symbols['NAME OF COMPANY'].unique().tolist(), label='Select Company', value=None)
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
interval = gr.Dropdown(limits['interval'].tolist(), label='Select Interval', value=None)
|
45 |
+
|
46 |
+
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
|
47 |
+
period = gr.Dropdown(label = 'Select Period', choices=["max"], value="max")
|
48 |
+
|
49 |
+
# Updating period based on interval
|
50 |
+
def update_period(interval):
|
51 |
+
limit = limits[limits['interval'] == interval]['limit'].values[0]
|
52 |
+
idx = period_list.index(limit)
|
53 |
+
return gr.Dropdown(period_list[:idx+1]+['max'], interactive=True, label='Select Period')
|
54 |
+
|
55 |
+
interval.change(update_period, [interval], [period])
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
strategy = gr.Dropdown(['Order Block', 'Order Block with EMA', 'Structure trading'], label='Strategy', value=None)
|
59 |
+
swing_hl = gr.Number(label="Swing High/Low Window Size", value=10, interactive=True)
|
60 |
+
|
61 |
+
@gr.render(inputs=[strategy])
|
62 |
+
def show_extra(strat):
|
63 |
+
if strat == "Order Block with EMA":
|
64 |
+
with gr.Row():
|
65 |
+
ema1 = gr.Number(label='Fast EMA length', value=9)
|
66 |
+
ema2 = gr.Number(label='Slow EMA length', value=21)
|
67 |
+
cross_close = gr.Checkbox(label='Close trade on EMA crossover')
|
68 |
+
input = [stock, interval, period, strategy, swing_hl, ema1, ema2, cross_close]
|
69 |
+
|
70 |
+
elif strat == "Order Block" or strat == "Structure trading":
|
71 |
+
input = [stock, interval, period, strategy, swing_hl]
|
72 |
+
else:
|
73 |
+
input = []
|
74 |
+
|
75 |
+
btn.click(
|
76 |
+
run,
|
77 |
+
inputs=input,
|
78 |
+
outputs=[signal_plot, backtest_plot]
|
79 |
+
)
|
80 |
+
|
81 |
+
examples = gr.Examples(
|
82 |
+
examples=[
|
83 |
+
["Reliance Industries Limited", "15m", "max", "Order Block", 10],
|
84 |
+
["Reliance Industries Limited", "15m", "max", "Order Block with EMA", 10],
|
85 |
+
["Reliance Industries Limited", "15m", "max", "Structure trading", 20],
|
86 |
+
],
|
87 |
+
example_labels=['Order Block', 'Order Block with EMA', 'Structure trading'],
|
88 |
+
inputs=[stock, interval, period, strategy, swing_hl]
|
89 |
+
)
|
90 |
+
|
91 |
+
btn = gr.Button("Run")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
signal_plot = gr.Plot(label='Signal plot')
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
backtest_plot = gr.Plot(label='Backtesting plot')
|
98 |
+
|
99 |
+
app.launch(debug=True)
|
data/Ticker_List_NSE_India.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/ind_nifty50list.csv
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Company Name,Industry,Symbol,Series,ISIN Code
|
2 |
+
Adani Enterprises Ltd.,Metals & Mining,ADANIENT,EQ,INE423A01024
|
3 |
+
Adani Ports and Special Economic Zone Ltd.,Services,ADANIPORTS,EQ,INE742F01042
|
4 |
+
Apollo Hospitals Enterprise Ltd.,Healthcare,APOLLOHOSP,EQ,INE437A01024
|
5 |
+
Asian Paints Ltd.,Consumer Durables,ASIANPAINT,EQ,INE021A01026
|
6 |
+
Axis Bank Ltd.,Financial Services,AXISBANK,EQ,INE238A01034
|
7 |
+
Bajaj Auto Ltd.,Automobile and Auto Components,BAJAJ-AUTO,EQ,INE917I01010
|
8 |
+
Bajaj Finance Ltd.,Financial Services,BAJFINANCE,EQ,INE296A01024
|
9 |
+
Bajaj Finserv Ltd.,Financial Services,BAJAJFINSV,EQ,INE918I01026
|
10 |
+
Bharat Electronics Ltd.,Capital Goods,BEL,EQ,INE263A01024
|
11 |
+
Bharat Petroleum Corporation Ltd.,Oil Gas & Consumable Fuels,BPCL,EQ,INE029A01011
|
12 |
+
Bharti Airtel Ltd.,Telecommunication,BHARTIARTL,EQ,INE397D01024
|
13 |
+
Britannia Industries Ltd.,Fast Moving Consumer Goods,BRITANNIA,EQ,INE216A01030
|
14 |
+
Cipla Ltd.,Healthcare,CIPLA,EQ,INE059A01026
|
15 |
+
Coal India Ltd.,Oil Gas & Consumable Fuels,COALINDIA,EQ,INE522F01014
|
16 |
+
Dr. Reddy's Laboratories Ltd.,Healthcare,DRREDDY,EQ,INE089A01031
|
17 |
+
Dummy ITC Ltd.,Consumer Services,DUMMYITC,EQ,DUM154A01025
|
18 |
+
Eicher Motors Ltd.,Automobile and Auto Components,EICHERMOT,EQ,INE066A01021
|
19 |
+
Grasim Industries Ltd.,Construction Materials,GRASIM,EQ,INE047A01021
|
20 |
+
HCL Technologies Ltd.,Information Technology,HCLTECH,EQ,INE860A01027
|
21 |
+
HDFC Bank Ltd.,Financial Services,HDFCBANK,EQ,INE040A01034
|
22 |
+
HDFC Life Insurance Company Ltd.,Financial Services,HDFCLIFE,EQ,INE795G01014
|
23 |
+
Hero MotoCorp Ltd.,Automobile and Auto Components,HEROMOTOCO,EQ,INE158A01026
|
24 |
+
Hindalco Industries Ltd.,Metals & Mining,HINDALCO,EQ,INE038A01020
|
25 |
+
Hindustan Unilever Ltd.,Fast Moving Consumer Goods,HINDUNILVR,EQ,INE030A01027
|
26 |
+
ICICI Bank Ltd.,Financial Services,ICICIBANK,EQ,INE090A01021
|
27 |
+
ITC Ltd.,Fast Moving Consumer Goods,ITC,EQ,INE154A01025
|
28 |
+
IndusInd Bank Ltd.,Financial Services,INDUSINDBK,EQ,INE095A01012
|
29 |
+
Infosys Ltd.,Information Technology,INFY,EQ,INE009A01021
|
30 |
+
JSW Steel Ltd.,Metals & Mining,JSWSTEEL,EQ,INE019A01038
|
31 |
+
Kotak Mahindra Bank Ltd.,Financial Services,KOTAKBANK,EQ,INE237A01028
|
32 |
+
Larsen & Toubro Ltd.,Construction,LT,EQ,INE018A01030
|
33 |
+
Mahindra & Mahindra Ltd.,Automobile and Auto Components,M&M,EQ,INE101A01026
|
34 |
+
Maruti Suzuki India Ltd.,Automobile and Auto Components,MARUTI,EQ,INE585B01010
|
35 |
+
NTPC Ltd.,Power,NTPC,EQ,INE733E01010
|
36 |
+
Nestle India Ltd.,Fast Moving Consumer Goods,NESTLEIND,EQ,INE239A01024
|
37 |
+
Oil & Natural Gas Corporation Ltd.,Oil Gas & Consumable Fuels,ONGC,EQ,INE213A01029
|
38 |
+
Power Grid Corporation of India Ltd.,Power,POWERGRID,EQ,INE752E01010
|
39 |
+
Reliance Industries Ltd.,Oil Gas & Consumable Fuels,RELIANCE,EQ,INE002A01018
|
40 |
+
SBI Life Insurance Company Ltd.,Financial Services,SBILIFE,EQ,INE123W01016
|
41 |
+
Shriram Finance Ltd.,Financial Services,SHRIRAMFIN,EQ,INE721A01047
|
42 |
+
State Bank of India,Financial Services,SBIN,EQ,INE062A01020
|
43 |
+
Sun Pharmaceutical Industries Ltd.,Healthcare,SUNPHARMA,EQ,INE044A01036
|
44 |
+
Tata Consultancy Services Ltd.,Information Technology,TCS,EQ,INE467B01029
|
45 |
+
Tata Consumer Products Ltd.,Fast Moving Consumer Goods,TATACONSUM,EQ,INE192A01025
|
46 |
+
Tata Motors Ltd.,Automobile and Auto Components,TATAMOTORS,EQ,INE155A01022
|
47 |
+
Tata Steel Ltd.,Metals & Mining,TATASTEEL,EQ,INE081A01020
|
48 |
+
Tech Mahindra Ltd.,Information Technology,TECHM,EQ,INE669C01036
|
49 |
+
Titan Company Ltd.,Consumer Durables,TITAN,EQ,INE280A01028
|
50 |
+
Trent Ltd.,Consumer Services,TRENT,EQ,INE849A01020
|
51 |
+
UltraTech Cement Ltd.,Construction Materials,ULTRACEMCO,EQ,INE481G01011
|
52 |
+
Wipro Ltd.,Information Technology,WIPRO,EQ,INE075A01022
|
data/yahoo_limits.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
interval,limit
|
2 |
+
1m,5d
|
3 |
+
2m,1mo
|
4 |
+
5m,1mo
|
5 |
+
15m,1mo
|
6 |
+
30m,1mo
|
7 |
+
1h,2y
|
8 |
+
1d,ytd
|
9 |
+
5d,ytd
|
10 |
+
1wk,ytd
|
11 |
+
1mo,ytd
|
12 |
+
3mo,ytd
|
indicators.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
+
|
6 |
+
class SMC:
|
7 |
+
def __init__(self, data, swing_hl_window_sz=10):
|
8 |
+
"""
|
9 |
+
Smart Money Concept
|
10 |
+
:param data:
|
11 |
+
Should contain Open, High, Low, Close columns and 'Date' as index.
|
12 |
+
:type data: pd.DataFrame
|
13 |
+
:param swing_hl_window_sz: {int}
|
14 |
+
CHoCH Detection Period.
|
15 |
+
"""
|
16 |
+
self.data = data
|
17 |
+
self.data['Date'] = self.data.index.to_series()
|
18 |
+
self.swing_hl_window_sz = swing_hl_window_sz
|
19 |
+
self.order_blocks = self.order_block()
|
20 |
+
self.swing_hl = self.swing_highs_lows_v2(self.swing_hl_window_sz)
|
21 |
+
self.structure_map = self.bos_choch(self.swing_hl)
|
22 |
+
|
23 |
+
def backtest_buy_signal_ob(self):
|
24 |
+
"""
|
25 |
+
:return:
|
26 |
+
Get buy signals from order blocks mitigation index.
|
27 |
+
:rtype: np.ndarray
|
28 |
+
"""
|
29 |
+
# Get only bullish order blocks which are mitigated.
|
30 |
+
bull_ob = self.order_blocks[(self.order_blocks['OB']==1) & (self.order_blocks['MitigatedIndex']!=0)]
|
31 |
+
arr = np.zeros(len(self.data))
|
32 |
+
# Mark the mitigated indices with 1.
|
33 |
+
arr[bull_ob['MitigatedIndex'].apply(lambda x: int(x))] = 1
|
34 |
+
return arr
|
35 |
+
|
36 |
+
def backtest_sell_signal_ob(self):
|
37 |
+
"""
|
38 |
+
:return:
|
39 |
+
Get sell signals from order blocks mitigation index.
|
40 |
+
:rtype: np.ndarray
|
41 |
+
"""
|
42 |
+
# Get only bearish order blocks which are mitigated.
|
43 |
+
bear_ob = self.order_blocks[(self.order_blocks['OB'] == -1) & (self.order_blocks['MitigatedIndex'] != 0)]
|
44 |
+
arr = np.zeros(len(self.data))
|
45 |
+
# Mark the mitigated indices with -1.
|
46 |
+
arr[bear_ob['MitigatedIndex'].apply(lambda x: int(x))] = -1
|
47 |
+
return arr
|
48 |
+
|
49 |
+
def backtest_buy_signal_structure(self):
|
50 |
+
"""
|
51 |
+
:return:
|
52 |
+
Get buy signals from bullish structure broken index.
|
53 |
+
:rtype: np.ndarray
|
54 |
+
"""
|
55 |
+
# Get only bullish structure.
|
56 |
+
bull_struct = self.structure_map[(self.structure_map['BOS'] == 1) | (self.structure_map['CHOCH'] == 1)]
|
57 |
+
arr = np.zeros(len(self.data))
|
58 |
+
# Mark the broken indices with 1.
|
59 |
+
arr[bull_struct['BrokenIndex'].apply(lambda x: int(x))] = 1
|
60 |
+
return arr
|
61 |
+
|
62 |
+
def backtest_sell_signal_structure(self):
|
63 |
+
"""
|
64 |
+
:return:
|
65 |
+
Get buy signals from bullish structure broken index.
|
66 |
+
:rtype: np.ndarray
|
67 |
+
"""
|
68 |
+
# Get only bearish structure.
|
69 |
+
bull_struct = self.structure_map[(self.structure_map['BOS'] == -1) | (self.structure_map['CHOCH'] == -1)]
|
70 |
+
arr = np.zeros(len(self.data))
|
71 |
+
# Mark the broken indices with -1.
|
72 |
+
arr[bull_struct['BrokenIndex'].apply(lambda x: int(x))] = 1
|
73 |
+
return arr
|
74 |
+
|
75 |
+
def swing_highs_lows(self, window_size):
|
76 |
+
"""
|
77 |
+
Basic version of swing highs and lows. Suitable for finding swing order blocks.
|
78 |
+
:param window_size:
|
79 |
+
Window size for searching swing highs and lows
|
80 |
+
:type window_size: int
|
81 |
+
:return:
|
82 |
+
DataFrame with Date, highs(bool), lows(bool) columns
|
83 |
+
:rtype: pd.DataFrame
|
84 |
+
"""
|
85 |
+
l = self.data['Low'].reset_index(drop=True)
|
86 |
+
h = self.data['High'].reset_index(drop=True)
|
87 |
+
swing_highs = (h.rolling(window_size, center=True).max() / h == 1.)
|
88 |
+
swing_lows = (l.rolling(window_size, center=True).min() / l == 1.)
|
89 |
+
return pd.DataFrame({'Date':self.data.index.to_series(), 'highs':swing_highs.values, 'lows':swing_lows.values})
|
90 |
+
|
91 |
+
def swing_highs_lows_v2(self, window_size):
|
92 |
+
"""
|
93 |
+
Updated version of swing_highs_lows function. Suitable for BOS and CHoCH.
|
94 |
+
:param window_size:
|
95 |
+
Window size for searching swing highs and lows.
|
96 |
+
:type window_size: int
|
97 |
+
:return:
|
98 |
+
DataFrame with HighLow(1 for bull, -1 for bear), Level columns.
|
99 |
+
:rtype: pd.DataFrame
|
100 |
+
"""
|
101 |
+
# Reversing the datapoints for .rolling() method with right to left.
|
102 |
+
l = self.data['Low'][::-1].reset_index(drop=True)
|
103 |
+
h = self.data['High'][::-1].reset_index(drop=True)
|
104 |
+
swing_highs = (h.rolling(window_size, min_periods=1).max() / h == 1.)[::-1]
|
105 |
+
swing_lows = (l.rolling(window_size, min_periods=1).min() / l == 1.)[::-1]
|
106 |
+
|
107 |
+
swing_highs.reset_index(drop=True, inplace=True)
|
108 |
+
swing_lows.reset_index(drop=True, inplace=True)
|
109 |
+
|
110 |
+
# Mark swing highs as 1 and swing lows as -1.
|
111 |
+
swings = np.where((swing_highs | swing_lows), np.where(swing_highs, 1, -1), 0)
|
112 |
+
|
113 |
+
# Filtering only one swing high between two swing lows and vice-versa.
|
114 |
+
state = 1
|
115 |
+
for i in range(1, swings.shape[0]):
|
116 |
+
if swings[i] == state or swings[i] == 0:
|
117 |
+
swings[i] = 0
|
118 |
+
else:
|
119 |
+
state *= -1
|
120 |
+
|
121 |
+
# Replace 0 with NaN.
|
122 |
+
swing_highs_lows = np.where(swings==0, np.nan, swings)
|
123 |
+
|
124 |
+
# Get positions of swing_highs_lows where elements are not np.nan
|
125 |
+
pos = np.where(~np.isnan(swing_highs_lows))[0]
|
126 |
+
|
127 |
+
# Set first position and last position of swing_highs_lows.
|
128 |
+
if len(pos) > 0:
|
129 |
+
if swing_highs_lows[pos[0]] == 1:
|
130 |
+
swing_highs_lows[0] = -1
|
131 |
+
if swing_highs_lows[pos[0]] == -1:
|
132 |
+
swing_highs_lows[0] = 1
|
133 |
+
if swing_highs_lows[pos[-1]] == -1:
|
134 |
+
swing_highs_lows[-1] = 1
|
135 |
+
if swing_highs_lows[pos[-1]] == 1:
|
136 |
+
swing_highs_lows[-1] = -1
|
137 |
+
|
138 |
+
level = np.where(
|
139 |
+
~np.isnan(swing_highs_lows),
|
140 |
+
np.where(swing_highs_lows == 1, self.data.High, self.data.Low),
|
141 |
+
np.nan,
|
142 |
+
)
|
143 |
+
|
144 |
+
return pd.concat(
|
145 |
+
[
|
146 |
+
pd.Series(swing_highs_lows, name="HighLow"),
|
147 |
+
pd.Series(level, name="Level"),
|
148 |
+
],
|
149 |
+
axis=1,
|
150 |
+
)
|
151 |
+
|
152 |
+
def bos_choch(self, swing_highs_lows):
|
153 |
+
"""
|
154 |
+
Break of Structure and Change of Character
|
155 |
+
:param swing_highs_lows: A DataFrame which contains swing highs and lows.
|
156 |
+
Format should be same as swing_highs_lows_v2() function.
|
157 |
+
:type swing_highs_lows: pd.DataFrame
|
158 |
+
:return: A DataFrame with BOS(1 for bear, -1 for bull),
|
159 |
+
CHOCH(1 for bear, -1 for bull), Level, BrokenIndex as columns.
|
160 |
+
:rtype: pd.DataFrame
|
161 |
+
"""
|
162 |
+
level_order = []
|
163 |
+
highs_lows_order = []
|
164 |
+
|
165 |
+
bos = np.zeros(len(self.data), dtype=np.int32)
|
166 |
+
choch = np.zeros(len(self.data), dtype=np.int32)
|
167 |
+
level = np.zeros(len(self.data), dtype=np.float32)
|
168 |
+
|
169 |
+
last_positions = []
|
170 |
+
|
171 |
+
for i in range(len(swing_highs_lows["HighLow"])):
|
172 |
+
if not np.isnan(swing_highs_lows["HighLow"][i]):
|
173 |
+
level_order.append(swing_highs_lows["Level"][i])
|
174 |
+
highs_lows_order.append(swing_highs_lows["HighLow"][i])
|
175 |
+
if len(level_order) >= 4:
|
176 |
+
# bullish bos
|
177 |
+
# -1
|
178 |
+
# -3 __BOS__ / \
|
179 |
+
# / \ / \
|
180 |
+
# / \ /
|
181 |
+
# \ / \ /
|
182 |
+
# \ / -2
|
183 |
+
# -4
|
184 |
+
bos[last_positions[-2]] = (
|
185 |
+
1
|
186 |
+
if (
|
187 |
+
np.all(highs_lows_order[-4:] == [-1, 1, -1, 1])
|
188 |
+
and np.all(
|
189 |
+
level_order[-4]
|
190 |
+
< level_order[-2]
|
191 |
+
< level_order[-3]
|
192 |
+
< level_order[-1]
|
193 |
+
)
|
194 |
+
)
|
195 |
+
else 0
|
196 |
+
)
|
197 |
+
level[last_positions[-2]] = (
|
198 |
+
level_order[-3] if bos[last_positions[-2]] !=0 else 0
|
199 |
+
)
|
200 |
+
|
201 |
+
# bearish bos
|
202 |
+
# -4
|
203 |
+
# / \ -2
|
204 |
+
# / \ / \
|
205 |
+
# \ / \
|
206 |
+
# \ / \
|
207 |
+
# \ /__BOS__\ /
|
208 |
+
# -3 \ /
|
209 |
+
# -1
|
210 |
+
bos[last_positions[-2]] = (
|
211 |
+
-1
|
212 |
+
if(
|
213 |
+
np.all(highs_lows_order[-4:] == [1, -1, 1, -1])
|
214 |
+
and np.all(
|
215 |
+
level_order[-4]
|
216 |
+
> level_order[-2]
|
217 |
+
> level_order[-3]
|
218 |
+
> level_order[-1]
|
219 |
+
)
|
220 |
+
)
|
221 |
+
else bos[last_positions[-2]]
|
222 |
+
)
|
223 |
+
level[last_positions[-2]] = (
|
224 |
+
level_order[-3] if bos[last_positions[-2]] != 0 else 0
|
225 |
+
)
|
226 |
+
|
227 |
+
# bullish CHoCH
|
228 |
+
# -1
|
229 |
+
# -3 __CHoCH__ / \
|
230 |
+
# / \ / \
|
231 |
+
# / \ /
|
232 |
+
# \ / \ /
|
233 |
+
# \ / \ /
|
234 |
+
# -4 \ /
|
235 |
+
# -2
|
236 |
+
choch[last_positions[-2]] = (
|
237 |
+
1
|
238 |
+
if (
|
239 |
+
np.all(highs_lows_order[-4:] == [-1, 1, -1, 1])
|
240 |
+
and np.all(
|
241 |
+
level_order[-1]
|
242 |
+
> level_order[-3]
|
243 |
+
> level_order[-4]
|
244 |
+
> level_order[-2]
|
245 |
+
)
|
246 |
+
)
|
247 |
+
else 0
|
248 |
+
)
|
249 |
+
level[last_positions[-2]] = (
|
250 |
+
level_order[-3]
|
251 |
+
if choch[last_positions[-2]] != 0
|
252 |
+
else level[last_positions[-2]]
|
253 |
+
)
|
254 |
+
|
255 |
+
# bearish CHoCH
|
256 |
+
# -2
|
257 |
+
# -4 / \
|
258 |
+
# / \ / \
|
259 |
+
# / \ / \
|
260 |
+
# \ / \
|
261 |
+
# \ / \
|
262 |
+
# -3__CHoCH__ \ /
|
263 |
+
# \ /
|
264 |
+
# -1
|
265 |
+
choch[last_positions[-2]] = (
|
266 |
+
-1
|
267 |
+
if (
|
268 |
+
np.all(highs_lows_order[-4:] == [1, -1, 1, -1])
|
269 |
+
and np.all(
|
270 |
+
level_order[-1]
|
271 |
+
< level_order[-3]
|
272 |
+
< level_order[-4]
|
273 |
+
< level_order[-2]
|
274 |
+
)
|
275 |
+
)
|
276 |
+
else choch[last_positions[-2]]
|
277 |
+
)
|
278 |
+
level[last_positions[-2]] = (
|
279 |
+
level_order[-3]
|
280 |
+
if choch[last_positions[-2]] != 0
|
281 |
+
else level[last_positions[-2]]
|
282 |
+
)
|
283 |
+
|
284 |
+
last_positions.append(i)
|
285 |
+
|
286 |
+
broken = np.zeros(len(self.data), dtype=np.int32)
|
287 |
+
for i in np.where(np.logical_or(bos != 0, choch != 0))[0]:
|
288 |
+
mask = np.zeros(len(self.data), dtype=np.bool_)
|
289 |
+
# if the bos is 1 then check if the candles high has gone above the level
|
290 |
+
if bos[i] == 1 or choch[i] == 1:
|
291 |
+
mask = self.data.Close[i + 2:] > level[i]
|
292 |
+
# if the bos is -1 then check if the candles low has gone below the level
|
293 |
+
elif bos[i] == -1 or choch[i] == -1:
|
294 |
+
mask = self.data.Close[i + 2:] < level[i]
|
295 |
+
if np.any(mask):
|
296 |
+
j = np.argmax(mask) + i + 2
|
297 |
+
broken[i] = j
|
298 |
+
# if there are any unbroken bos or CHoCH that started before this one and ended after this one then remove them
|
299 |
+
for k in np.where(np.logical_or(bos != 0, choch != 0))[0]:
|
300 |
+
if k < i and broken[k] >= j:
|
301 |
+
bos[k] = 0
|
302 |
+
choch[k] = 0
|
303 |
+
level[k] = 0
|
304 |
+
|
305 |
+
# remove the ones that aren't broken
|
306 |
+
for i in np.where(
|
307 |
+
np.logical_and(np.logical_or(bos != 0, choch != 0), broken == 0)
|
308 |
+
)[0]:
|
309 |
+
bos[i] = 0
|
310 |
+
choch[i] = 0
|
311 |
+
level[i] = 0
|
312 |
+
|
313 |
+
# replace all the 0s with np.nan
|
314 |
+
bos = np.where(bos != 0, bos, np.nan)
|
315 |
+
choch = np.where(choch != 0, choch, np.nan)
|
316 |
+
level = np.where(level != 0, level, np.nan)
|
317 |
+
broken = np.where(broken != 0, broken, np.nan)
|
318 |
+
|
319 |
+
bos = pd.Series(bos, name="BOS")
|
320 |
+
choch = pd.Series(choch, name="CHOCH")
|
321 |
+
level = pd.Series(level, name="Level")
|
322 |
+
broken = pd.Series(broken, name="BrokenIndex")
|
323 |
+
|
324 |
+
return pd.concat([bos, choch, level, broken], axis=1)
|
325 |
+
|
326 |
+
def fvg(self):
|
327 |
+
"""
|
328 |
+
FVG - Fair Value Gap
|
329 |
+
A fair value gap is when the previous high is lower than the next low if the current candle is bullish.
|
330 |
+
Or when the previous low is higher than the next high if the current candle is bearish.
|
331 |
+
|
332 |
+
:return:\
|
333 |
+
FVG = 1 if bullish fair value gap, -1 if bearish fair value gap
|
334 |
+
Top = the top of the fair value gap
|
335 |
+
Bottom = the bottom of the fair value gap
|
336 |
+
MitigatedIndex = the index of the candle that mitigated the fair value gap
|
337 |
+
:rtype: pd.DataFrame
|
338 |
+
"""
|
339 |
+
|
340 |
+
fvg = np.where(
|
341 |
+
(
|
342 |
+
(self.data["High"].shift(1) < self.data["Low"].shift(-1))
|
343 |
+
& (self.data["Close"] > self.data["Open"])
|
344 |
+
)
|
345 |
+
| (
|
346 |
+
(self.data["Low"].shift(1) > self.data["High"].shift(-1))
|
347 |
+
& (self.data["Close"] < self.data["Open"])
|
348 |
+
),
|
349 |
+
np.where(self.data["Close"] > self.data["Open"], 1, -1),
|
350 |
+
np.nan,
|
351 |
+
)
|
352 |
+
|
353 |
+
top = np.where(
|
354 |
+
~np.isnan(fvg),
|
355 |
+
np.where(
|
356 |
+
self.data["Close"] > self.data["Open"],
|
357 |
+
self.data["Low"].shift(-1),
|
358 |
+
self.data["Low"].shift(1),
|
359 |
+
),
|
360 |
+
np.nan,
|
361 |
+
)
|
362 |
+
|
363 |
+
bottom = np.where(
|
364 |
+
~np.isnan(fvg),
|
365 |
+
np.where(
|
366 |
+
self.data["Close"] > self.data["Open"],
|
367 |
+
self.data["High"].shift(1),
|
368 |
+
self.data["High"].shift(-1),
|
369 |
+
),
|
370 |
+
np.nan,
|
371 |
+
)
|
372 |
+
|
373 |
+
mitigated_index = np.zeros(len(self.data), dtype=np.int32)
|
374 |
+
for i in np.where(~np.isnan(fvg))[0]:
|
375 |
+
mask = np.zeros(len(self.data), dtype=np.bool_)
|
376 |
+
if fvg[i] == 1:
|
377 |
+
mask = self.data["Low"][i + 2:] <= top[i]
|
378 |
+
elif fvg[i] == -1:
|
379 |
+
mask = self.data["High"][i + 2:] >= bottom[i]
|
380 |
+
if np.any(mask):
|
381 |
+
j = np.argmax(mask) + i + 2
|
382 |
+
mitigated_index[i] = j
|
383 |
+
|
384 |
+
mitigated_index = np.where(np.isnan(fvg), np.nan, mitigated_index)
|
385 |
+
|
386 |
+
return pd.concat(
|
387 |
+
[
|
388 |
+
pd.Series(fvg.flatten(), name="FVG"),
|
389 |
+
pd.Series(top.flatten(), name="Top"),
|
390 |
+
pd.Series(bottom.flatten(), name="Bottom"),
|
391 |
+
pd.Series(mitigated_index.flatten(), name="MitigatedIndex"),
|
392 |
+
],
|
393 |
+
axis=1,
|
394 |
+
)
|
395 |
+
|
396 |
+
def order_block(self, imb_perc=.1, join_consecutive=True):
|
397 |
+
"""
|
398 |
+
OB - Order Block
|
399 |
+
Order block is the presence of a chunk of market orders that results in a sudden rise or fall in the market
|
400 |
+
|
401 |
+
:return:\
|
402 |
+
OB = 1 if bullish order block, -1 if bearish order block
|
403 |
+
Top = the top of the order block
|
404 |
+
Bottom = the bottom of the order block
|
405 |
+
MitigatedIndex = the index of the candle that mitigated the order block
|
406 |
+
:rtype: pd.DataFrame
|
407 |
+
"""
|
408 |
+
hl = self.swing_highs_lows(self.swing_hl_window_sz)
|
409 |
+
|
410 |
+
ob = np.where(
|
411 |
+
(
|
412 |
+
((self.data["High"]*((100+imb_perc)/100)) < self.data["Low"].shift(-2))
|
413 |
+
& ((hl['lows']==True) | (hl['lows'].shift(1)==True))
|
414 |
+
)
|
415 |
+
| (
|
416 |
+
(self.data["Low"] > (self.data["High"].shift(-2)*((100+imb_perc)/100)))
|
417 |
+
& ((hl['highs']==True) | (hl['highs'].shift(1)==True))
|
418 |
+
),
|
419 |
+
np.where(((hl['lows']==True) | (hl['lows'].shift(1)==True)), 1, -1),
|
420 |
+
np.nan,
|
421 |
+
)
|
422 |
+
|
423 |
+
# print(ob)
|
424 |
+
|
425 |
+
top = np.where(
|
426 |
+
~np.isnan(ob),
|
427 |
+
np.where(
|
428 |
+
self.data["Close"] > self.data["Open"],
|
429 |
+
self.data["Low"].shift(-2),
|
430 |
+
self.data["Low"],
|
431 |
+
),
|
432 |
+
np.nan,
|
433 |
+
)
|
434 |
+
|
435 |
+
bottom = np.where(
|
436 |
+
~np.isnan(ob),
|
437 |
+
np.where(
|
438 |
+
self.data["Close"] > self.data["Open"],
|
439 |
+
self.data["High"],
|
440 |
+
self.data["High"].shift(-2),
|
441 |
+
),
|
442 |
+
np.nan,
|
443 |
+
)
|
444 |
+
|
445 |
+
# if join_consecutive:
|
446 |
+
# for i in range(len(ob) - 1):
|
447 |
+
# if ob[i] == ob[i + 1]:
|
448 |
+
# top[i + 1] = max(top[i], top[i + 1])
|
449 |
+
# bottom[i + 1] = min(bottom[i], bottom[i + 1])
|
450 |
+
# ob[i] = top[i] = bottom[i] = np.nan
|
451 |
+
|
452 |
+
mitigated_index = np.zeros(len(self.data), dtype=np.int32)
|
453 |
+
for i in np.where(~np.isnan(ob))[0]:
|
454 |
+
mask = np.zeros(len(self.data), dtype=np.bool_)
|
455 |
+
if ob[i] == 1:
|
456 |
+
mask = self.data["Low"][i + 3:] <= top[i]
|
457 |
+
elif ob[i] == -1:
|
458 |
+
mask = self.data["High"][i + 3:] >= bottom[i]
|
459 |
+
if np.any(mask):
|
460 |
+
j = np.argmax(mask) + i + 3
|
461 |
+
mitigated_index[i] = int(j)
|
462 |
+
ob = ob.flatten()
|
463 |
+
mitigated_index1 = np.where(np.isnan(ob), np.nan, mitigated_index)
|
464 |
+
|
465 |
+
return pd.concat(
|
466 |
+
[
|
467 |
+
pd.Series(ob.flatten(), name="OB"),
|
468 |
+
pd.Series(top.flatten(), name="Top"),
|
469 |
+
pd.Series(bottom.flatten(), name="Bottom"),
|
470 |
+
pd.Series(mitigated_index1.flatten(), name="MitigatedIndex"),
|
471 |
+
],
|
472 |
+
axis=1,
|
473 |
+
).dropna(subset=['OB'])
|
474 |
+
|
475 |
+
def plot(self, order_blocks=False, swing_hl=False, swing_hl_v2=False, structure=False, show=True):
|
476 |
+
"""
|
477 |
+
:param order_blocks:
|
478 |
+
:param swing_hl:
|
479 |
+
:param swing_hl_v2:
|
480 |
+
:param structure:
|
481 |
+
:param show:
|
482 |
+
:return:
|
483 |
+
"""
|
484 |
+
fig = make_subplots(1, 1)
|
485 |
+
|
486 |
+
# plot the candle stick graph
|
487 |
+
fig.add_trace(go.Candlestick(x=self.data.index.to_series(),
|
488 |
+
open=self.data['Open'],
|
489 |
+
high=self.data['High'],
|
490 |
+
low=self.data['Low'],
|
491 |
+
close=self.data['Close'],
|
492 |
+
name='ohlc'))
|
493 |
+
|
494 |
+
# grab first and last observations from df.date and make a continuous date range from that
|
495 |
+
dt_all = pd.date_range(start=self.data['Date'].iloc[0], end=self.data['Date'].iloc[-1], freq='5min')
|
496 |
+
|
497 |
+
# check which dates from your source that also accur in the continuous date range
|
498 |
+
dt_obs = [d.strftime("%Y-%m-%d %H:%M:%S") for d in self.data['Date']]
|
499 |
+
|
500 |
+
# isolate missing timestamps
|
501 |
+
dt_breaks = [d for d in dt_all.strftime("%Y-%m-%d %H:%M:%S").tolist() if not d in dt_obs]
|
502 |
+
|
503 |
+
# adjust xaxis for rangebreaks
|
504 |
+
fig.update_xaxes(rangebreaks=[dict(dvalue=5 * 60 * 1000, values=dt_breaks)])
|
505 |
+
|
506 |
+
if order_blocks:
|
507 |
+
# print(self.order_blocks.head())
|
508 |
+
# print(self.order_blocks.index.to_list())
|
509 |
+
|
510 |
+
ob_df = self.data.iloc[self.order_blocks.index.to_list()]
|
511 |
+
# print(ob_df)
|
512 |
+
|
513 |
+
fig.add_trace(go.Scatter(
|
514 |
+
x=ob_df['Date'],
|
515 |
+
y=ob_df['Low'],
|
516 |
+
name="Order Block",
|
517 |
+
mode='markers',
|
518 |
+
marker_symbol='diamond-dot',
|
519 |
+
marker_size=13,
|
520 |
+
marker_line_width=2,
|
521 |
+
# offsetgroup=0,
|
522 |
+
))
|
523 |
+
|
524 |
+
if swing_hl:
|
525 |
+
hl = self.swing_highs_lows(self.swing_hl_window_sz)
|
526 |
+
h = hl[(hl['highs']==True)]
|
527 |
+
l = hl[hl['lows']==True]
|
528 |
+
|
529 |
+
fig.add_trace(go.Scatter(
|
530 |
+
x=h['Date'],
|
531 |
+
y=self.data[self.data.Date.isin(h['Date'])]['High']*(100.1/100),
|
532 |
+
mode='markers',
|
533 |
+
marker_symbol="triangle-up-dot",
|
534 |
+
marker_size=10,
|
535 |
+
name='Swing High',
|
536 |
+
# offsetgroup=2,
|
537 |
+
))
|
538 |
+
fig.add_trace(go.Scatter(
|
539 |
+
x=l['Date'],
|
540 |
+
y=self.data[self.data.Date.isin(l['Date'])]['Low']*(99.9/100),
|
541 |
+
mode='markers',
|
542 |
+
marker_symbol="triangle-down-dot",
|
543 |
+
marker_size=10,
|
544 |
+
name='Swing Low',
|
545 |
+
marker_color='red',
|
546 |
+
# offsetgroup=2,
|
547 |
+
))
|
548 |
+
|
549 |
+
if swing_hl_v2:
|
550 |
+
hl = self.swing_hl
|
551 |
+
h = hl[hl['HighLow']==1]
|
552 |
+
l = hl[hl['HighLow']==-1]
|
553 |
+
|
554 |
+
fig.add_trace(go.Scatter(
|
555 |
+
x=self.data['Date'].iloc[h.index],
|
556 |
+
y=h['Level'],
|
557 |
+
mode='markers',
|
558 |
+
marker_symbol="triangle-up-dot",
|
559 |
+
marker_size=10,
|
560 |
+
name='Swing High',
|
561 |
+
marker_color='green',
|
562 |
+
))
|
563 |
+
fig.add_trace(go.Scatter(
|
564 |
+
x=self.data['Date'].iloc[l.index],
|
565 |
+
y=l['Level'],
|
566 |
+
mode='markers',
|
567 |
+
marker_symbol="triangle-down-dot",
|
568 |
+
marker_size=10,
|
569 |
+
name='Swing Low',
|
570 |
+
marker_color='red',
|
571 |
+
))
|
572 |
+
|
573 |
+
if structure:
|
574 |
+
struct = self.structure_map
|
575 |
+
struct.dropna(subset=['Level'], inplace=True)
|
576 |
+
|
577 |
+
for i in range(len(struct)):
|
578 |
+
x0 = self.data['Date'].iloc[struct.index[i]]
|
579 |
+
x1 = self.data['Date'].iloc[int(struct['BrokenIndex'].iloc[i])]
|
580 |
+
y = struct['Level'].iloc[i]
|
581 |
+
label = "BOS" if np.isnan(struct['CHOCH'].iloc[i]) else "CHOCH"
|
582 |
+
direction = struct[label].iloc[i]
|
583 |
+
|
584 |
+
# Add scatter trace for the line
|
585 |
+
fig.add_trace(go.Scatter(
|
586 |
+
x=[x0, x1], # x-coordinates of the line
|
587 |
+
y=[y, y], # y-coordinates of the line
|
588 |
+
mode="lines+text", # Line and optional label
|
589 |
+
line=dict(color="blue" if label=="BOS" else "orange"), # Customize line color
|
590 |
+
text=[None, label], # Add label only at one end
|
591 |
+
textposition="top left" if direction==1 else "bottom left", # Adjust label position
|
592 |
+
name=label, # Legend entry for this line
|
593 |
+
showlegend=False
|
594 |
+
))
|
595 |
+
|
596 |
+
fig.update_layout(xaxis_rangeslider_visible=False)
|
597 |
+
if show:
|
598 |
+
fig.show()
|
599 |
+
return fig
|
600 |
+
|
601 |
+
|
602 |
+
def EMA(array, n):
|
603 |
+
"""
|
604 |
+
:param array: price of the stock
|
605 |
+
:param n: window size
|
606 |
+
:type n: int
|
607 |
+
:return: Exponential moving average
|
608 |
+
:rtype: pd.Series
|
609 |
+
"""
|
610 |
+
return pd.Series(array).ewm(span=n, adjust=False).mean()
|
611 |
+
|
612 |
+
if __name__ == "__main__":
|
613 |
+
from utils import fetch
|
614 |
+
|
615 |
+
data = fetch('ICICIBANK.NS', period='1mo', interval='15m')
|
616 |
+
data = fetch('RELIANCE.NS', period='1mo', interval='15m')
|
617 |
+
data['Date'] = data.index.to_series()
|
618 |
+
filter = pd.to_datetime('2024-12-17 09:50:00.0000000011',
|
619 |
+
format='%Y-%m-%d %H:%M:%S.%f')
|
620 |
+
# data = data[data['Date']<filter]
|
621 |
+
# print(SMC(data).backtest_buy_signal())
|
622 |
+
# print(SMC(data).swing_highs_lows_v3(10).to_string())
|
623 |
+
# print(data.tail())
|
624 |
+
SMC(data).plot(order_blocks=False, swing_hl=False, swing_hl_v2=True, structure=True, show=True)
|
625 |
+
# struct = SMC(data).structure_map
|
626 |
+
# print(struct)
|
627 |
+
#
|
628 |
+
# for i in range(len(data)):
|
629 |
+
# print(i, data['Date'][i], struct['BrokenIndex'].iloc[i])
|
630 |
+
# SMC(data).structure()
|
pages/complete_backtest.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from streamlit.components import v1 as components
|
4 |
+
from utils import complete_test
|
5 |
+
|
6 |
+
def complete_backtest():
|
7 |
+
st.title("Evaluate Strategy")
|
8 |
+
|
9 |
+
limits = pd.read_csv('data/yahoo_limits.csv')
|
10 |
+
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
|
11 |
+
|
12 |
+
c1, c2 = st.columns(2)
|
13 |
+
with c1:
|
14 |
+
# Select strategy
|
15 |
+
strategy = st.selectbox("Select Strategy", ['Order Block', 'Order Block with EMA', 'Structure trading'], index=2)
|
16 |
+
with c2:
|
17 |
+
# Swing High/Low window size
|
18 |
+
swing_hl = st.number_input("Swing High/Low Window Size", min_value=1, value=10)
|
19 |
+
|
20 |
+
c1, c2 = st.columns(2)
|
21 |
+
with c1:
|
22 |
+
# Select interval
|
23 |
+
interval = st.selectbox("Select Interval", limits['interval'].tolist(), index=3)
|
24 |
+
with c2:
|
25 |
+
# Update period options based on interval
|
26 |
+
limit = limits[limits['interval'] == interval]['limit'].values[0]
|
27 |
+
idx = period_list.index(limit)
|
28 |
+
period_options = period_list[:idx + 1] + ['max']
|
29 |
+
period = st.selectbox("Select Period", period_options, index=3)
|
30 |
+
|
31 |
+
# EMA parameters if "Order Block with EMA" is selected
|
32 |
+
if strategy == "Order Block with EMA":
|
33 |
+
c1, c2, c3 = st.columns(3)
|
34 |
+
with c1:
|
35 |
+
ema1 = st.number_input("Fast EMA Length", min_value=1, value=9)
|
36 |
+
with c2:
|
37 |
+
ema2 = st.number_input("Slow EMA Length", min_value=1, value=21)
|
38 |
+
with c3:
|
39 |
+
cross_close = st.checkbox("Close trade on EMA crossover", value=False)
|
40 |
+
else:
|
41 |
+
ema1, ema2, cross_close = None, None, None
|
42 |
+
|
43 |
+
# Button to run the analysis
|
44 |
+
if st.button("Run"):
|
45 |
+
st.session_state.results = complete_test(strategy, period, interval, swing_hl=swing_hl, ema1=ema1, ema2=ema2, cross_close=cross_close)
|
46 |
+
|
47 |
+
if "results" in st.session_state:
|
48 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
|
49 |
+
df = st.dataframe(st.session_state.results, hide_index=True, column_order=cols, on_select="rerun", selection_mode="single-row")
|
50 |
+
if df.selection.rows:
|
51 |
+
row = df.selection.rows
|
52 |
+
plot = st.session_state.results['plot'].values[row]
|
53 |
+
components.html(plot[0], height=1067)
|
54 |
+
|
55 |
+
complete_backtest()
|
pages/dashboard.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
from bokeh.io import output_file, save
|
6 |
+
from bokeh.plotting import figure
|
7 |
+
from streamlit.components import v1 as components
|
8 |
+
|
9 |
+
from indicators import SMC
|
10 |
+
from utils import fetch, smc_plot_backtest, smc_ema_plot_backtest, smc_structure_plot_backtest
|
11 |
+
|
12 |
+
def use_file_for_bokeh(chart: figure, chart_height=1067):
|
13 |
+
# Function used to replace st.boken_chart, because streamlit doesn't support bokeh v3
|
14 |
+
file_name = f'bokeh_graph_{random.getrandbits(8)}.html'
|
15 |
+
output_file(file_name)
|
16 |
+
save(chart)
|
17 |
+
with open(file_name, 'r', encoding='utf-8') as f:
|
18 |
+
html = f.read()
|
19 |
+
os.remove(file_name)
|
20 |
+
components.html(html, height=chart_height)
|
21 |
+
|
22 |
+
st.bokeh_chart = use_file_for_bokeh
|
23 |
+
|
24 |
+
def algorithmic_trading_dashboard():
|
25 |
+
# Load data
|
26 |
+
symbols = pd.read_csv('data/Ticker_List_NSE_India.csv')
|
27 |
+
limits = pd.read_csv('data/yahoo_limits.csv')
|
28 |
+
|
29 |
+
# Dropdown options
|
30 |
+
period_list = ['1d', '5d', '1mo', '3mo', '6mo', '1y', '2y', '5y', '10y', 'ytd', 'max']
|
31 |
+
|
32 |
+
# Input fields on the main page
|
33 |
+
st.title("Algorithmic Trading Dashboard")
|
34 |
+
|
35 |
+
# Select stock
|
36 |
+
stock = st.selectbox("Select Company", symbols['NAME OF COMPANY'].unique(), index=None)
|
37 |
+
|
38 |
+
c1, c2 = st.columns(2)
|
39 |
+
|
40 |
+
with c1:
|
41 |
+
# Select interval
|
42 |
+
interval = st.selectbox("Select Interval", limits['interval'].tolist(), index=3)
|
43 |
+
|
44 |
+
with c2:
|
45 |
+
# Update period options based on interval
|
46 |
+
limit = limits[limits['interval'] == interval]['limit'].values[0]
|
47 |
+
idx = period_list.index(limit)
|
48 |
+
period_options = period_list[:idx + 1] + ['max']
|
49 |
+
period = st.selectbox("Select Period", period_options, index=3)
|
50 |
+
|
51 |
+
c1, c2 = st.columns(2)
|
52 |
+
|
53 |
+
with c1:
|
54 |
+
# Select strategy
|
55 |
+
strategy = st.selectbox("Select Strategy", ['Order Block', 'Order Block with EMA', 'Structure trading'], index=2)
|
56 |
+
|
57 |
+
with c2:
|
58 |
+
# Swing High/Low window size
|
59 |
+
swing_hl = st.number_input("Swing High/Low Window Size", min_value=1, value=10)
|
60 |
+
|
61 |
+
# EMA parameters if "Order Block with EMA" is selected
|
62 |
+
if strategy == "Order Block with EMA":
|
63 |
+
c1, c2, c3 = st.columns(3)
|
64 |
+
with c1:
|
65 |
+
ema1 = st.number_input("Fast EMA Length", min_value=1, value=9)
|
66 |
+
with c2:
|
67 |
+
ema2 = st.number_input("Slow EMA Length", min_value=1, value=21)
|
68 |
+
with c3:
|
69 |
+
cross_close = st.checkbox("Close trade on EMA crossover", value=False)
|
70 |
+
|
71 |
+
# Button to run the analysis
|
72 |
+
if st.button("Run"):
|
73 |
+
# Fetch ticker data
|
74 |
+
ticker = symbols[symbols['NAME OF COMPANY'] == stock]['YahooEquiv'].values[0]
|
75 |
+
data = fetch(ticker, period, interval)
|
76 |
+
|
77 |
+
# Generate signal plot based on strategy
|
78 |
+
if strategy == "Order Block" or strategy == "Order Block with EMA":
|
79 |
+
signal_plot = (
|
80 |
+
SMC(data=data, swing_hl_window_sz=swing_hl)
|
81 |
+
.plot(order_blocks=True, swing_hl=True, show=False)
|
82 |
+
.update_layout(title=dict(text=ticker))
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
signal_plot = (
|
86 |
+
SMC(data=data, swing_hl_window_sz=swing_hl)
|
87 |
+
.plot(swing_hl_v2=True, structure=True, show=False)
|
88 |
+
.update_layout(title=dict(text=ticker))
|
89 |
+
)
|
90 |
+
|
91 |
+
# Generate backtest plot
|
92 |
+
if strategy == "Order Block":
|
93 |
+
backtest_plot = smc_plot_backtest(data, 'test.html', swing_hl)
|
94 |
+
elif strategy == "Order Block with EMA":
|
95 |
+
backtest_plot = smc_ema_plot_backtest(data, 'test.html', ema1, ema2, cross_close)
|
96 |
+
elif strategy == "Structure trading":
|
97 |
+
backtest_plot = smc_structure_plot_backtest(data, 'test.html', swing_hl)
|
98 |
+
|
99 |
+
# Display plots
|
100 |
+
st.write("### Signal Plot")
|
101 |
+
st.plotly_chart(signal_plot, width=1200)
|
102 |
+
|
103 |
+
st.write("### Backtesting Plot")
|
104 |
+
st.bokeh_chart(backtest_plot)
|
105 |
+
|
106 |
+
algorithmic_trading_dashboard()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backtesting==0.3.3
|
2 |
+
numpy==2.2.0
|
3 |
+
pandas==2.2.3
|
4 |
+
bokeh==3.1.0
|
5 |
+
yfinance==0.2.50
|
6 |
+
plotly==5.24.1
|
7 |
+
gradio==5.11.0
|
8 |
+
streamlit==1.41.1
|
strategies.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from backtesting import Backtest, Strategy
|
2 |
+
from backtesting.lib import SignalStrategy, TrailingStrategy
|
3 |
+
from indicators import SMC, EMA
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
class SMC_test(Strategy):
|
8 |
+
swing_window = 10
|
9 |
+
def init(self):
|
10 |
+
super().init()
|
11 |
+
|
12 |
+
# Setting smc buy and sell indicators.
|
13 |
+
self.smc_b = self.I(self.smc_buy, data=self.data.df, swing_hl=self.swing_window)
|
14 |
+
self.smc_s = self.I(self.smc_sell, data=self.data.df, swing_hl=self.swing_window)
|
15 |
+
|
16 |
+
def next(self):
|
17 |
+
price = self.data.Close[-1]
|
18 |
+
current_time = self.data.index[-1]
|
19 |
+
|
20 |
+
# If buy signal, set target 5% above price and stoploss 5% below price.
|
21 |
+
if self.smc_b[-1] == 1:
|
22 |
+
self.buy(sl=.95 * price, tp=1.05 * price)
|
23 |
+
# If sell signal, set targe 5% below price and stoploss 5% above price.
|
24 |
+
if self.smc_s[-1] == -1:
|
25 |
+
self.sell(tp=.95 * price, sl=1.05 * price)
|
26 |
+
|
27 |
+
# Additionally, set aggressive stop-loss on trades that have been open
|
28 |
+
# for more than two days
|
29 |
+
for trade in self.trades:
|
30 |
+
if current_time - trade.entry_time > pd.Timedelta('2 days'):
|
31 |
+
if trade.is_long:
|
32 |
+
trade.sl = max(trade.sl, self.data.Low[-1])
|
33 |
+
else:
|
34 |
+
trade.sl = min(trade.sl, self.data.High[-1])
|
35 |
+
|
36 |
+
def smc_buy(self, data, swing_hl):
|
37 |
+
return SMC(data, swing_hl).backtest_buy_signal_ob()
|
38 |
+
|
39 |
+
def smc_sell(self, data, swing_hl):
|
40 |
+
return SMC(data, swing_hl).backtest_sell_signal_ob()
|
41 |
+
|
42 |
+
|
43 |
+
class SMC_ema(SignalStrategy, TrailingStrategy):
|
44 |
+
ema1 = 9
|
45 |
+
ema2 = 21
|
46 |
+
close_on_crossover = False
|
47 |
+
|
48 |
+
def init(self):
|
49 |
+
super().init()
|
50 |
+
|
51 |
+
# Setting smc buy and sell indicators.
|
52 |
+
self.smc_b = self.I(self.smc_buy, self.data.df)
|
53 |
+
self.smc_s = self.I(self.smc_sell, self.data.df)
|
54 |
+
|
55 |
+
close = self.data.Close
|
56 |
+
|
57 |
+
# Setting up EMAs.
|
58 |
+
self.ma1 = self.I(EMA, close, self.ema1)
|
59 |
+
self.ma2 = self.I(EMA, close, self.ema2)
|
60 |
+
|
61 |
+
|
62 |
+
def next(self):
|
63 |
+
price = self.data.Close[-1]
|
64 |
+
current_time = self.data.index[-1]
|
65 |
+
|
66 |
+
# If buy signal and short moving average is above long moving average.
|
67 |
+
if self.smc_b[-1] == 1 and self.ma1 > self.ma2:
|
68 |
+
self.buy(sl=.95 * price, tp=1.05 * price)
|
69 |
+
# If sell signal and short moving average is below long moving average.
|
70 |
+
if self.smc_s[-1] == -1 and self.ma1 < self.ma2:
|
71 |
+
self.sell(tp=.95 * price, sl=1.05 * price)
|
72 |
+
|
73 |
+
# Additionally, set aggressive stop-loss on trades that have been open
|
74 |
+
# for more than two days
|
75 |
+
for trade in self.trades:
|
76 |
+
if current_time - trade.entry_time > pd.Timedelta('2 days'):
|
77 |
+
if trade.is_long:
|
78 |
+
trade.sl = max(trade.sl, self.data.Low[-1])
|
79 |
+
else:
|
80 |
+
trade.sl = min(trade.sl, self.data.High[-1])
|
81 |
+
|
82 |
+
# Close the trade if there is a moving average crossover in opposite direction
|
83 |
+
if self.close_on_crossover:
|
84 |
+
for trade in self.trades:
|
85 |
+
if trade.is_long and self.ma1 < self.ma2:
|
86 |
+
trade.close()
|
87 |
+
if trade.is_short and self.ma1 > self.ma2:
|
88 |
+
trade.close()
|
89 |
+
|
90 |
+
def smc_buy(self, data):
|
91 |
+
return SMC(data).backtest_buy_signal_ob()
|
92 |
+
|
93 |
+
def smc_sell(self, data):
|
94 |
+
return SMC(data).backtest_sell_signal_ob()
|
95 |
+
|
96 |
+
|
97 |
+
class SMCStructure(TrailingStrategy):
|
98 |
+
swing_window = 20
|
99 |
+
|
100 |
+
def init(self):
|
101 |
+
super().init()
|
102 |
+
self.smc_b = self.I(self.smc_buy, data=self.data.df, swing_hl=self.swing_window)
|
103 |
+
self.smc_s = self.I(self.smc_sell, data=self.data.df, swing_hl=self.swing_window)
|
104 |
+
self.set_trailing_sl(2)
|
105 |
+
# self.swing = self.I(self.nearest_swing, data=self.data.df, swing_hl)
|
106 |
+
|
107 |
+
def next(self):
|
108 |
+
price = self.data.Close[-1]
|
109 |
+
current_time = self.data.index[-1]
|
110 |
+
|
111 |
+
if self.smc_b[-1] == 1:
|
112 |
+
nearest = self.nearest_swing(self.data.df, self.swing_window)
|
113 |
+
target = price + ((price - nearest)* .414)
|
114 |
+
stoploss = price - (target-price)
|
115 |
+
# print(f"buy: {current_time}, {price}, {nearest}, {target}, {stoploss}")
|
116 |
+
try:
|
117 |
+
self.buy(sl=stoploss, tp=target)
|
118 |
+
except:
|
119 |
+
print('Buying failed')
|
120 |
+
if self.smc_s[-1] == 1:
|
121 |
+
nearest = self.nearest_swing(self.data.df, self.swing_window)
|
122 |
+
print(self.data.df.iloc[-1])
|
123 |
+
if nearest > price:
|
124 |
+
target = price - ((nearest - price) * .414)
|
125 |
+
stoploss = price + (price - target)
|
126 |
+
# print(f"sell: {current_time}, {price}, {nearest}, {target}, {stoploss}")
|
127 |
+
try:
|
128 |
+
self.sell(sl=stoploss, tp=target, limit=float(price))
|
129 |
+
except:
|
130 |
+
print("Selling failed")
|
131 |
+
|
132 |
+
# Additionally, set aggressive stop-loss on trades that have been open
|
133 |
+
# for more than two days
|
134 |
+
for trade in self.trades:
|
135 |
+
if current_time - trade.entry_time > pd.Timedelta('2 days'):
|
136 |
+
if trade.is_long:
|
137 |
+
trade.sl = max(trade.sl, self.data.Low[-1])
|
138 |
+
else:
|
139 |
+
trade.sl = min(trade.sl, self.data.High[-1])
|
140 |
+
|
141 |
+
def smc_buy(self, data, swing_hl):
|
142 |
+
return SMC(data, swing_hl).backtest_buy_signal_structure()
|
143 |
+
|
144 |
+
def smc_sell(self, data, swing_hl):
|
145 |
+
return SMC(data, swing_hl).backtest_sell_signal_structure()
|
146 |
+
|
147 |
+
def nearest_swing(self, data, swing_hl):
|
148 |
+
# Get swing high/low nearest to current price.
|
149 |
+
swings = SMC(data, swing_hl).swing_hl
|
150 |
+
swings = swings[~np.isnan(swings['Level'])]
|
151 |
+
return swings['Level'].iloc[-2]
|
152 |
+
|
153 |
+
strategies = {'Order Block': SMC_test, 'Order Block with EMA': SMC_ema , 'Structure trading': SMCStructure}
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
from utils import fetch
|
157 |
+
# data = fetch('ICICIBANK.NS', period='1mo', interval='15m')
|
158 |
+
data = fetch('RELIANCE.NS', period='1mo', interval='15m')
|
159 |
+
# data = fetch('AXISBANK.NS', period='1mo', interval='15m')
|
160 |
+
# bt = Backtest(data, SMC_ema, commission=.002)
|
161 |
+
# bt.run(ema1 = 9, ema2 = 21, close_on_crossover=True)
|
162 |
+
bt = Backtest(data, SMCStructure, commission = .002, trade_on_close=True)
|
163 |
+
print(bt.run())
|
164 |
+
|
165 |
+
# bt.plot()
|
streamlit_app.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(page_title="Algorithmic Trading Dashboard", layout="wide", initial_sidebar_state="auto",
|
4 |
+
menu_items=None, page_icon=":chart_with_upwards_trend:")
|
5 |
+
|
6 |
+
dashboard = st.Page("pages/dashboard.py", title="Dashboard")
|
7 |
+
complete_test = st.Page("pages/complete_backtest.py", title="Nifty50 Test")
|
8 |
+
|
9 |
+
pg = st.navigation([dashboard, complete_test])
|
10 |
+
|
11 |
+
pg.run()
|
utils.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
from backtesting import Backtest
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
|
6 |
+
from strategies import SMC_test, SMC_ema, SMCStructure
|
7 |
+
|
8 |
+
def fetch(symbol, period, interval):
|
9 |
+
df = yf.download(symbol, period=period, interval=interval)
|
10 |
+
df.columns =df.columns.get_level_values(0)
|
11 |
+
return df
|
12 |
+
|
13 |
+
def smc_plot_backtest(data, filename, swing_hl, **kwargs):
|
14 |
+
bt = Backtest(data, SMC_test, **kwargs)
|
15 |
+
bt.run(swing_window=swing_hl)
|
16 |
+
return bt.plot(filename=filename, open_browser=False)
|
17 |
+
|
18 |
+
def smc_ema_plot_backtest(data, filename, ema1, ema2, closecross, **kwargs):
|
19 |
+
bt = Backtest(data, SMC_ema, **kwargs)
|
20 |
+
bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
|
21 |
+
return bt.plot(filename=filename, open_browser=False)
|
22 |
+
|
23 |
+
def smc_structure_plot_backtest(data, filename, swing_hl, **kwargs):
|
24 |
+
bt = Backtest(data, SMCStructure, **kwargs)
|
25 |
+
bt.run(swing_window=swing_hl)
|
26 |
+
return bt.plot(filename=filename, open_browser=False)
|
27 |
+
|
28 |
+
def smc_backtest(data, swing_hl, **kwargs):
|
29 |
+
bt = Backtest(data, SMC_test, **kwargs)
|
30 |
+
results = bt.run(swing_window=swing_hl)
|
31 |
+
bt.plot(filename='bokeh_graph.html', open_browser=False)
|
32 |
+
return results
|
33 |
+
|
34 |
+
def smc_ema_backtest(data, ema1, ema2, closecross, **kwargs):
|
35 |
+
bt = Backtest(data, SMC_ema, **kwargs)
|
36 |
+
results = bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross)
|
37 |
+
bt.plot(filename='bokeh_graph.html', open_browser=False)
|
38 |
+
return results
|
39 |
+
|
40 |
+
def smc_structure_backtest(data, swing_hl, **kwargs):
|
41 |
+
bt = Backtest(data, SMCStructure, **kwargs)
|
42 |
+
results = bt.run(swing_window=swing_hl)
|
43 |
+
bt.plot(filename='bokeh_graph.html', open_browser=False)
|
44 |
+
return results
|
45 |
+
|
46 |
+
def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5, **kwargs):
|
47 |
+
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
48 |
+
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
49 |
+
|
50 |
+
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
51 |
+
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
52 |
+
|
53 |
+
# Generating random indices between 0 and len(nifty50).
|
54 |
+
random_indices = random.sample(range(0, len(nifty50)), no_of_stocks)
|
55 |
+
|
56 |
+
df = pd.DataFrame()
|
57 |
+
|
58 |
+
for i in random_indices:
|
59 |
+
# Fetching ohlc of random ticker_symbol.
|
60 |
+
ticker_symbol = nifty50['YahooEquiv'].values[i]
|
61 |
+
data = fetch(ticker_symbol, period, interval)
|
62 |
+
|
63 |
+
if strategy == "Order Block":
|
64 |
+
backtest_results = smc_backtest(data, kwargs['swing_hl'])
|
65 |
+
elif strategy == "Order Block with EMA":
|
66 |
+
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
67 |
+
elif strategy == "Structure trading":
|
68 |
+
backtest_results = smc_structure_backtest(data, kwargs['swing_hl'])
|
69 |
+
else:
|
70 |
+
raise Exception('Strategy not found')
|
71 |
+
|
72 |
+
with open("bokeh_graph.html", 'r', encoding='utf-8') as f:
|
73 |
+
plot = f.read()
|
74 |
+
|
75 |
+
# Converting pd.Series to pd.Dataframe
|
76 |
+
backtest_results = backtest_results.to_frame().transpose()
|
77 |
+
|
78 |
+
backtest_results['stock'] = ticker_symbol
|
79 |
+
|
80 |
+
# Reordering columns.
|
81 |
+
# cols = df.columns.tolist()
|
82 |
+
# cols = cols[-1:] + cols[:-1]
|
83 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
|
84 |
+
backtest_results = backtest_results[cols]
|
85 |
+
|
86 |
+
df = pd.concat([df, backtest_results])
|
87 |
+
|
88 |
+
df = df.sort_values(by=['Return [%]'], ascending=False)
|
89 |
+
|
90 |
+
return df
|
91 |
+
|
92 |
+
def complete_test(strategy: str, period: str, interval: str, **kwargs):
|
93 |
+
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
94 |
+
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
95 |
+
|
96 |
+
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
97 |
+
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
98 |
+
|
99 |
+
df = pd.DataFrame()
|
100 |
+
|
101 |
+
for i in range(len(nifty50)):
|
102 |
+
# for i in range(5):
|
103 |
+
|
104 |
+
# Fetching ohlc of random ticker_symbol.
|
105 |
+
ticker_symbol = nifty50['YahooEquiv'].values[i]
|
106 |
+
data = fetch(ticker_symbol, period, interval)
|
107 |
+
|
108 |
+
if strategy == "Order Block":
|
109 |
+
backtest_results = smc_backtest(data, kwargs['swing_hl'])
|
110 |
+
elif strategy == "Order Block with EMA":
|
111 |
+
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
112 |
+
elif strategy == "Structure trading":
|
113 |
+
backtest_results = smc_structure_backtest(data, kwargs['swing_hl'])
|
114 |
+
else:
|
115 |
+
raise Exception('Strategy not found')
|
116 |
+
|
117 |
+
with open("bokeh_graph.html", 'r', encoding='utf-8') as f:
|
118 |
+
plot = f.read()
|
119 |
+
|
120 |
+
# Converting pd.Series to pd.Dataframe
|
121 |
+
backtest_results = backtest_results.to_frame().transpose()
|
122 |
+
|
123 |
+
backtest_results['stock'] = ticker_symbol
|
124 |
+
backtest_results['plot'] = plot
|
125 |
+
|
126 |
+
# Reordering columns.
|
127 |
+
# cols = df.columns.tolist()
|
128 |
+
# cols = cols[-1:] + cols[:-1]
|
129 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'plot']
|
130 |
+
backtest_results = backtest_results[cols]
|
131 |
+
|
132 |
+
df = pd.concat([df, backtest_results])
|
133 |
+
|
134 |
+
df['plot'] = df['plot'].astype(str)
|
135 |
+
df = df.sort_values(by=['Return [%]'], ascending=False)
|
136 |
+
|
137 |
+
return df
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
# random_testing("")
|
142 |
+
# data = fetch('RELIANCE.NS', period='1y', interval='15m')
|
143 |
+
# df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
|
144 |
+
|
145 |
+
rt = complete_test("Order Block", '1mo', '15m', swing_hl=20)
|
146 |
+
rt.to_excel('test/all_testing_1.xlsx', index=False)
|
147 |
+
print(rt)
|