Spaces:
Running
on
A100
Running
on
A100
File size: 17,832 Bytes
880de81 4c7362f 1167d4f e05c441 141829b a8bd881 d7863e4 e05c441 880de81 141829b 880de81 a8bd881 880de81 141829b 880de81 141829b d7863e4 141829b a8bd881 141829b b7a96e8 141829b b7a96e8 22498e9 141829b 1ecd2e5 141829b a8bd881 141829b d7863e4 141829b a8bd881 d7863e4 a8bd881 141829b a8bd881 0836d7b 7f59bd0 d78f68b 7f59bd0 a8bd881 7f59bd0 a8bd881 7f59bd0 a8bd881 7f59bd0 141829b 1ecd2e5 141829b d7863e4 141829b d7863e4 141829b 1ecd2e5 141829b c77c2d5 a8bd881 c77c2d5 bfcc0a3 a8bd881 c77c2d5 bfcc0a3 c77c2d5 a8bd881 c77c2d5 bfcc0a3 c77c2d5 a8bd881 c77c2d5 0a5b574 c77c2d5 141829b 880de81 97072ea 880de81 c43a83e c7fdc4d 946878e c43a83e a8bd881 c43a83e 946878e a8bd881 0cb8d8c a8bd881 0cb8d8c a8bd881 880de81 946878e 0cb8d8c 880de81 a8bd881 be5d51f 8323202 880de81 946878e 395daf7 a8bd881 c7fdc4d 8323202 0cb8d8c bfcc0a3 21888ca bfcc0a3 7f59bd0 bfcc0a3 21888ca bfcc0a3 21888ca bfcc0a3 a8bd881 946878e a8bd881 bfcc0a3 21888ca bfcc0a3 7f59bd0 0cb8d8c a8bd881 141829b 7f59bd0 bfcc0a3 141829b bfcc0a3 21888ca bfcc0a3 fc0912b a8bd881 7f59bd0 a8bd881 7f59bd0 a8bd881 7f59bd0 a8bd881 7f59bd0 a8bd881 141829b 7f59bd0 9c83cd8 a8bd881 7f59bd0 141829b 9c83cd8 a8bd881 141829b 946878e 141829b a8bd881 8323202 f652e04 141829b 880de81 167ab4b 0cb8d8c 880de81 f38285f a8bd881 f38285f 0cb8d8c 8323202 880de81 6a9b659 4c7362f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import json
import gradio as gr
import torch
import spaces
import tempfile
from pathlib import Path
import subprocess
import logging
import xml.etree.ElementTree as ET
from xml.dom import minidom
from transformers import AutoProcessor, AutoModelForImageTextToText
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_examples(json_path: str) -> dict:
with open(json_path, 'r') as f:
return json.load(f)
def format_duration(seconds: float) -> str:
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
def get_video_duration_seconds(video_path: str) -> float:
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
class VideoHighlightDetector:
def __init__(
self,
model_path: str,
device: str = "cuda",
batch_size: int = 8
):
self.device = device
self.batch_size = batch_size
# Initialize model and processor
self.processor = AutoProcessor.from_pretrained(model_path)
self.model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to(device)
def analyze_video_content(self, video_path: str) -> str:
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_message}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
def analyze_segment(self, video_path: str) -> str:
"""Analyze a specific video segment and provide a brief description."""
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "Focus only on describing the key dramatic action or notable event occurring in this video segment. Skip general context or scene-setting details unless they are crucial to understanding the main action."}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": "WWhat is the main action or notable event happening in this segment? Describe it in one brief sentence."}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
def determine_highlights(self, video_description: str, prompt_num: int = 1) -> str:
"""Determine what constitutes highlights based on video description with different prompts."""
system_prompts = {
1: "You are a highlight editor. List archetypal dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in other videos of this type.",
2: "You are a helpful visual-language assistant that can understand videos and edit. You are tasked helping the user to create highlight reels for videos. Highlights should be rare and important events in the video in question."
}
user_prompts = {
1: "List potential highlight moments to look for in this video:",
2: "List dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in any video of this type:"
}
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prompts[prompt_num]}]
},
{
"role": "user",
"content": [{"type": "text", "text": f"""Here is a description of a video:\n\n{video_description}\n\n{user_prompts[prompt_num]}"""}]
}
]
print(f"Using prompt {prompt_num} for highlight detection")
print(messages)
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
def process_segment(self, video_path: str, highlight_types: str) -> bool:
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a video highlight analyzer. Your role is to identify moments that have high dramatic value, focusing on displays of skill, emotion, personality, or tension. Compare video segments against provided example highlights to find moments with similar emotional impact and visual interest, even if the specific actions differ."}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": f"""Given these highlight examples:\n{highlight_types}\n\nDoes this video contain a moment that matches the core action of one of the highlights? Answer with:\n'yes' or 'no'\nIf yes, justify it"""}]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
return "yes" in response
def create_xspf_playlist(video_path: str, segments: list, descriptions: list) -> str:
"""Create XSPF playlist from segments with descriptions."""
# Get video filename with full path
video_filename = os.path.basename(video_path)
# Create the XML structure as a string
xml_content = [
'<?xml version="1.0" encoding="UTF-8"?>',
'<playlist version="1" xmlns="http://xspf.org/ns/0/" xmlns:vlc="http://www.videolan.org/vlc/playlist/0/">',
f' <title>{video_filename} - Highlights</title>',
' <trackList>'
]
for idx, ((start_time, end_time), description) in enumerate(zip(segments, descriptions)):
track = [
' <track>',
f' <location>file:///{video_filename}</location>',
f' <title>{description}</title>',
f' <annotation>{description}</annotation>',
' <extension application="http://www.videolan.org/vlc/playlist/0">',
f' <vlc:id>{idx}</vlc:id>',
f' <vlc:option>start-time={int(start_time)}</vlc:option>',
f' <vlc:option>stop-time={int(end_time)}</vlc:option>',
' </extension>',
' </track>'
]
xml_content.extend(track)
xml_content.extend([
' </trackList>',
'</playlist>'
])
return '\n'.join(xml_content)
def create_ui(examples_path: str, model_path: str):
examples_data = load_examples(examples_path)
with gr.Blocks() as app:
# gr.Markdown("# VLC Highlight Generator")
# gr.Markdown("Upload a video and get a list of highlights!")
with gr.Row():
gr.HTML("""
<div style="display: flex; align-items: center; gap: 10px;">
<img src="https://upload.wikimedia.org/wikipedia/commons/3/38/VLC_icon.png" style="width: 40px; height: 40px;"/>
<h1 style="margin: 0;">VLC Highlight Generator</h1>
</div>
""")
gr.Markdown("Upload a video and get a list of highlights!")
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="Upload your video (max 30 minutes)",
interactive=True
)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
output_playlist = gr.File(
label="Highlight Playlist (XSPF)",
visible=False,
interactive=False,
)
status = gr.Markdown()
analysis_accordion = gr.Accordion(
"Analysis Details",
open=True,
visible=False
)
with analysis_accordion:
video_description = gr.Markdown("")
highlight_types = gr.Markdown("")
@spaces.GPU
def on_process(video):
if not video:
return [
None,
"Please upload a video",
"",
"",
gr.update(visible=False)
]
try:
duration = get_video_duration_seconds(video)
if duration > 1800: # 30 minutes
return [
None,
"Video must be shorter than 30 minutes",
"",
"",
gr.update(visible=False)
]
yield [
None,
"Initializing video highlight detector...",
"",
"",
gr.update(visible=False)
]
detector = VideoHighlightDetector(model_path=model_path, batch_size=16)
yield [
None,
"Analyzing video content...",
"",
"",
gr.update(visible=False)
]
# Analyze video content
video_desc = detector.analyze_video_content(video)
formatted_desc = f"### Video Summary:\n{video_desc}"
yield [
None,
"Determining highlight types...",
formatted_desc,
"",
gr.update(visible=True)
]
highlights1 = detector.determine_highlights(video_desc, prompt_num=1)
highlights2 = detector.determine_highlights(video_desc, prompt_num=2)
formatted_highlights = f"### Highlight Criteria:\nSet 1:\n{highlights1}\n\nSet 2:\n{highlights2}"
# Process video in segments
segment_length = 10.0
kept_segments1 = []
kept_segments2 = []
segment_descriptions1 = []
segment_descriptions2 = []
segments_processed = 0
total_segments = int(duration / segment_length)
for start_time in range(0, int(duration), int(segment_length)):
end_time = min(start_time + segment_length, duration)
progress = int((segments_processed / total_segments) * 100)
yield [
None,
f"Processing segments... {progress}% complete",
formatted_desc,
formatted_highlights,
gr.update(visible=True)
]
# Create temporary segment
with tempfile.NamedTemporaryFile(suffix='.mp4') as temp_segment:
cmd = [
"ffmpeg",
"-y",
"-i", video,
"-ss", str(start_time),
"-t", str(segment_length),
"-c:v", "libx264",
"-preset", "ultrafast",
temp_segment.name
]
subprocess.run(cmd, check=True)
# Process with both highlight sets
if detector.process_segment(temp_segment.name, highlights1):
description = detector.analyze_segment(temp_segment.name)
kept_segments1.append((start_time, end_time))
segment_descriptions1.append(description)
if detector.process_segment(temp_segment.name, highlights2):
description = detector.analyze_segment(temp_segment.name)
kept_segments2.append((start_time, end_time))
segment_descriptions2.append(description)
segments_processed += 1
# Calculate percentages of video kept for each highlight set
total_duration = duration
duration1 = sum(end - start for start, end in kept_segments1)
duration2 = sum(end - start for start, end in kept_segments2)
percent1 = (duration1 / total_duration) * 100
percent2 = (duration2 / total_duration) * 100
print(f"Highlight set 1: {percent1:.1f}% of video")
print(f"Highlight set 2: {percent2:.1f}% of video")
# Choose the set with lower percentage unless it's zero
if (0 < percent2 <= percent1 or percent1 == 0):
final_segments = kept_segments2
segment_descriptions = segment_descriptions2
selected_set = "2"
percent_used = percent2
else:
final_segments = kept_segments1
segment_descriptions = segment_descriptions1
selected_set = "1"
percent_used = percent1
if final_segments:
# Create XSPF playlist
playlist_content = create_xspf_playlist(video, final_segments, segment_descriptions)
# Save playlist to temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix='.xspf', delete=False) as f:
f.write(playlist_content)
playlist_path = f.name
completion_message = f"Processing complete! Using highlight set {selected_set} ({percent_used:.1f}% of video). You can download the playlist."
yield [
gr.update(value=playlist_path, visible=True),
completion_message,
formatted_desc,
formatted_highlights,
gr.update(visible=True)
]
else:
yield [
None,
"No highlights detected in the video.",
formatted_desc,
formatted_highlights,
gr.update(visible=True)
]
except Exception as e:
logger.exception("Error processing video")
return [
None,
f"Error processing video: {str(e)}",
"",
"",
gr.update(visible=False)
]
finally:
torch.cuda.empty_cache()
process_btn.click(
on_process,
inputs=[input_video],
outputs=[
output_playlist,
status,
video_description,
highlight_types,
analysis_accordion
],
queue=True,
)
return app
if __name__ == "__main__":
app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
app.launch() |