File size: 17,832 Bytes
880de81
 
 
4c7362f
1167d4f
e05c441
141829b
 
 
a8bd881
 
d7863e4
e05c441
880de81
141829b
 
880de81
 
 
 
 
a8bd881
 
 
 
 
880de81
141829b
 
 
 
 
 
 
 
 
 
 
880de81
141829b
 
 
 
 
 
 
 
 
 
 
 
d7863e4
141829b
a8bd881
141829b
 
 
b7a96e8
141829b
b7a96e8
 
 
22498e9
141829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ecd2e5
141829b
a8bd881
 
141829b
 
 
d7863e4
141829b
 
 
a8bd881
 
d7863e4
a8bd881
141829b
 
a8bd881
 
 
 
 
 
 
 
 
 
 
0836d7b
7f59bd0
 
 
d78f68b
 
7f59bd0
 
 
 
 
 
a8bd881
 
 
7f59bd0
a8bd881
 
 
7f59bd0
a8bd881
 
7f59bd0
 
 
141829b
 
 
 
 
 
 
 
 
 
1ecd2e5
141829b
 
 
d7863e4
 
 
 
141829b
 
 
 
d7863e4
141829b
 
 
 
 
 
 
 
 
 
 
 
1ecd2e5
141829b
c77c2d5
a8bd881
 
c77c2d5
bfcc0a3
a8bd881
c77c2d5
 
 
 
bfcc0a3
c77c2d5
 
a8bd881
 
c77c2d5
 
 
bfcc0a3
c77c2d5
 
 
 
 
 
 
 
 
a8bd881
c77c2d5
 
 
 
0a5b574
c77c2d5
141829b
 
880de81
 
 
97072ea
 
 
 
 
 
 
 
 
 
 
 
880de81
c43a83e
 
c7fdc4d
946878e
c43a83e
 
 
 
a8bd881
 
c43a83e
 
 
946878e
a8bd881
0cb8d8c
a8bd881
0cb8d8c
 
 
 
 
a8bd881
 
880de81
946878e
0cb8d8c
880de81
a8bd881
 
be5d51f
 
 
 
8323202
880de81
946878e
 
395daf7
a8bd881
 
c7fdc4d
8323202
 
 
 
0cb8d8c
bfcc0a3
21888ca
bfcc0a3
 
 
 
 
 
7f59bd0
bfcc0a3
 
21888ca
bfcc0a3
 
 
21888ca
bfcc0a3
 
a8bd881
946878e
a8bd881
bfcc0a3
 
21888ca
bfcc0a3
 
 
 
 
 
7f59bd0
 
 
0cb8d8c
a8bd881
141829b
7f59bd0
 
 
 
bfcc0a3
 
 
141829b
 
bfcc0a3
 
 
21888ca
bfcc0a3
 
 
 
 
fc0912b
a8bd881
 
 
 
 
 
 
 
 
 
 
 
 
 
7f59bd0
 
 
 
 
 
 
a8bd881
7f59bd0
 
 
 
 
 
 
 
 
a8bd881
7f59bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8bd881
7f59bd0
a8bd881
 
 
 
 
141829b
7f59bd0
 
9c83cd8
a8bd881
7f59bd0
141829b
 
 
 
 
9c83cd8
a8bd881
141829b
 
 
 
 
946878e
 
141829b
a8bd881
 
8323202
 
 
 
 
f652e04
141829b
880de81
167ab4b
0cb8d8c
880de81
f38285f
a8bd881
f38285f
 
 
0cb8d8c
 
8323202
880de81
 
 
 
 
6a9b659
4c7362f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import json
import gradio as gr
import torch
import spaces
import tempfile
from pathlib import Path
import subprocess
import logging
import xml.etree.ElementTree as ET
from xml.dom import minidom
from transformers import AutoProcessor, AutoModelForImageTextToText


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def load_examples(json_path: str) -> dict:
    with open(json_path, 'r') as f:
        return json.load(f)

def format_duration(seconds: float) -> str:
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    return f"{hours:02d}:{minutes:02d}:{secs:02d}"

def get_video_duration_seconds(video_path: str) -> float:
    cmd = [
        "ffprobe",
        "-v", "quiet",
        "-print_format", "json",
        "-show_format",
        video_path
    ]
    result = subprocess.run(cmd, capture_output=True, text=True)
    info = json.loads(result.stdout)
    return float(info["format"]["duration"])

class VideoHighlightDetector:
    def __init__(
        self,
        model_path: str,
        device: str = "cuda",
        batch_size: int = 8
    ):
        self.device = device
        self.batch_size = batch_size
        
        # Initialize model and processor
        self.processor = AutoProcessor.from_pretrained(model_path)
        self.model = AutoModelForImageTextToText.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16
        ).to(device)
        
    def analyze_video_content(self, video_path: str) -> str:
        system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": system_message}]
            },
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."}
                ]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
        return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]

    def analyze_segment(self, video_path: str) -> str:
        """Analyze a specific video segment and provide a brief description."""
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "Focus only on describing the key dramatic action or notable event occurring in this video segment. Skip general context or scene-setting details unless they are crucial to understanding the main action."}]
            },
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": "WWhat is the main action or notable event happening in this segment? Describe it in one brief sentence."}
                ]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7)
        return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]

    def determine_highlights(self, video_description: str, prompt_num: int = 1) -> str:
        """Determine what constitutes highlights based on video description with different prompts."""
        system_prompts = {
            1: "You are a highlight editor. List archetypal dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in other videos of this type.",
            2: "You are a helpful visual-language assistant that can understand videos and edit. You are tasked helping the user to create highlight reels for videos. Highlights should be rare and important events in the video in question."
        }
        user_prompts = {
            1: "List potential highlight moments to look for in this video:",
            2: "List dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in any video of this type:"
        }
        
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": system_prompts[prompt_num]}]
            },
            {
                "role": "user",
                "content": [{"type": "text", "text": f"""Here is a description of a video:\n\n{video_description}\n\n{user_prompts[prompt_num]}"""}]
            }
        ]

        print(f"Using prompt {prompt_num} for highlight detection")
        print(messages)
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
        return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]

    def process_segment(self, video_path: str, highlight_types: str) -> bool:
        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are a video highlight analyzer. Your role is to identify moments that have high dramatic value, focusing on displays of skill, emotion, personality, or tension. Compare video segments against provided example highlights to find moments with similar emotional impact and visual interest, even if the specific actions differ."}]
            },
            {
                "role": "user",
                "content": [
                    {"type": "video", "path": video_path},
                    {"type": "text", "text": f"""Given these highlight examples:\n{highlight_types}\n\nDoes this video contain a moment that matches the core action of one of the highlights? Answer with:\n'yes' or 'no'\nIf yes, justify it"""}]
            }
        ]
        
        inputs = self.processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.device)
        
        outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
        response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
        return "yes" in response

def create_xspf_playlist(video_path: str, segments: list, descriptions: list) -> str:
    """Create XSPF playlist from segments with descriptions."""
    # Get video filename with full path
    video_filename = os.path.basename(video_path)
    
    # Create the XML structure as a string
    xml_content = [
        '<?xml version="1.0" encoding="UTF-8"?>',
        '<playlist version="1" xmlns="http://xspf.org/ns/0/" xmlns:vlc="http://www.videolan.org/vlc/playlist/0/">',
        f'  <title>{video_filename} - Highlights</title>',
        '  <trackList>'
    ]
    
    for idx, ((start_time, end_time), description) in enumerate(zip(segments, descriptions)):
        track = [
            '    <track>',
            f'      <location>file:///{video_filename}</location>',
            f'      <title>{description}</title>',
            f'      <annotation>{description}</annotation>',
            '      <extension application="http://www.videolan.org/vlc/playlist/0">',
            f'        <vlc:id>{idx}</vlc:id>',
            f'        <vlc:option>start-time={int(start_time)}</vlc:option>',
            f'        <vlc:option>stop-time={int(end_time)}</vlc:option>',
            '      </extension>',
            '    </track>'
        ]
        xml_content.extend(track)
    
    xml_content.extend([
        '  </trackList>',
        '</playlist>'
    ])
    
    return '\n'.join(xml_content)

def create_ui(examples_path: str, model_path: str):
    examples_data = load_examples(examples_path)

    with gr.Blocks() as app:
        # gr.Markdown("# VLC Highlight Generator")
        # gr.Markdown("Upload a video and get a list of highlights!")
        with gr.Row():
            gr.HTML("""
                <div style="display: flex; align-items: center; gap: 10px;">
                    <img src="https://upload.wikimedia.org/wikipedia/commons/3/38/VLC_icon.png" style="width: 40px; height: 40px;"/>
                    <h1 style="margin: 0;">VLC Highlight Generator</h1>
                </div>
            """)
        
        gr.Markdown("Upload a video and get a list of highlights!")
         
        with gr.Row():
            with gr.Column(scale=1):
                input_video = gr.Video(
                    label="Upload your video (max 30 minutes)",
                    interactive=True
                )
                process_btn = gr.Button("Process Video", variant="primary")
            
            with gr.Column(scale=1):
                output_playlist = gr.File(
                    label="Highlight Playlist (XSPF)",
                    visible=False,
                    interactive=False,
                )
                status = gr.Markdown()
                
                analysis_accordion = gr.Accordion(
                    "Analysis Details", 
                    open=True, 
                    visible=False
                )
                
                with analysis_accordion:
                    video_description = gr.Markdown("")
                    highlight_types = gr.Markdown("")

        @spaces.GPU
        def on_process(video):
            if not video:
                return [
                    None,
                    "Please upload a video",
                    "",
                    "",
                    gr.update(visible=False)
                ]
            
            try:
                duration = get_video_duration_seconds(video)
                if duration > 1800:  # 30 minutes
                    return [
                        None,
                        "Video must be shorter than 30 minutes",
                        "",
                        "",
                        gr.update(visible=False)
                    ]

                yield [
                    None,
                    "Initializing video highlight detector...",
                    "",
                    "",
                    gr.update(visible=False)
                ]

                detector = VideoHighlightDetector(model_path=model_path, batch_size=16)

                yield [
                    None,
                    "Analyzing video content...",
                    "",
                    "",
                    gr.update(visible=False)
                ]

                # Analyze video content
                video_desc = detector.analyze_video_content(video)
                formatted_desc = f"### Video Summary:\n{video_desc}"

                yield [
                    None,
                    "Determining highlight types...",
                    formatted_desc,
                    "",
                    gr.update(visible=True)
                ]

                highlights1 = detector.determine_highlights(video_desc, prompt_num=1)
                highlights2 = detector.determine_highlights(video_desc, prompt_num=2)
                formatted_highlights = f"### Highlight Criteria:\nSet 1:\n{highlights1}\n\nSet 2:\n{highlights2}"
                
                # Process video in segments
                segment_length = 10.0
                kept_segments1 = []
                kept_segments2 = []
                segment_descriptions1 = []
                segment_descriptions2 = []
                segments_processed = 0
                total_segments = int(duration / segment_length)

                for start_time in range(0, int(duration), int(segment_length)):
                    end_time = min(start_time + segment_length, duration)
                    progress = int((segments_processed / total_segments) * 100)

                    yield [
                        None,
                        f"Processing segments... {progress}% complete",
                        formatted_desc,
                        formatted_highlights,
                        gr.update(visible=True)
                    ]
                    
                    # Create temporary segment
                    with tempfile.NamedTemporaryFile(suffix='.mp4') as temp_segment:
                        cmd = [
                            "ffmpeg",
                            "-y",
                            "-i", video,
                            "-ss", str(start_time),
                            "-t", str(segment_length),
                            "-c:v", "libx264",
                            "-preset", "ultrafast",
                            temp_segment.name
                        ]
                        subprocess.run(cmd, check=True)
                        
                        # Process with both highlight sets
                        if detector.process_segment(temp_segment.name, highlights1):
                            description = detector.analyze_segment(temp_segment.name)
                            kept_segments1.append((start_time, end_time))
                            segment_descriptions1.append(description)
                            
                        if detector.process_segment(temp_segment.name, highlights2):
                            description = detector.analyze_segment(temp_segment.name)
                            kept_segments2.append((start_time, end_time))
                            segment_descriptions2.append(description)

                    segments_processed += 1

                # Calculate percentages of video kept for each highlight set
                total_duration = duration
                duration1 = sum(end - start for start, end in kept_segments1)
                duration2 = sum(end - start for start, end in kept_segments2)
                
                percent1 = (duration1 / total_duration) * 100
                percent2 = (duration2 / total_duration) * 100
                
                print(f"Highlight set 1: {percent1:.1f}% of video")
                print(f"Highlight set 2: {percent2:.1f}% of video")

                # Choose the set with lower percentage unless it's zero
                if (0 < percent2 <= percent1 or percent1 == 0):
                    final_segments = kept_segments2
                    segment_descriptions = segment_descriptions2
                    selected_set = "2"
                    percent_used = percent2
                else:
                    final_segments = kept_segments1
                    segment_descriptions = segment_descriptions1
                    selected_set = "1"
                    percent_used = percent1

                if final_segments:
                    # Create XSPF playlist
                    playlist_content = create_xspf_playlist(video, final_segments, segment_descriptions)
                    
                    # Save playlist to temporary file
                    with tempfile.NamedTemporaryFile(mode='w', suffix='.xspf', delete=False) as f:
                        f.write(playlist_content)
                        playlist_path = f.name
                    
                    completion_message = f"Processing complete! Using highlight set {selected_set} ({percent_used:.1f}% of video). You can download the playlist."
                    
                    yield [
                        gr.update(value=playlist_path, visible=True),
                        completion_message,
                        formatted_desc,
                        formatted_highlights,
                        gr.update(visible=True)
                    ]
                else:
                    yield [
                        None,
                        "No highlights detected in the video.",
                        formatted_desc,
                        formatted_highlights,
                        gr.update(visible=True)
                    ]

            except Exception as e:
                logger.exception("Error processing video")
                return [
                    None,
                    f"Error processing video: {str(e)}",
                    "",
                    "",
                    gr.update(visible=False)
                ]
            finally:
                torch.cuda.empty_cache()

        process_btn.click(
            on_process,
            inputs=[input_video],
            outputs=[
                output_playlist,
                status,
                video_description,
                highlight_types,
                analysis_accordion
            ],
            queue=True,
        )

    return app

if __name__ == "__main__":
    app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
    app.launch()