mfarre HF staff commited on
Commit
1ecd2e5
·
1 Parent(s): 22498e9
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -81,7 +81,7 @@ class VideoHighlightDetector:
81
  ).to(self.device)
82
 
83
  outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
84
- return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("Assistant: ")[1]
85
 
86
  def determine_highlights(self, video_description: str) -> str:
87
  """Determine what constitutes highlights based on video description."""
@@ -109,7 +109,7 @@ class VideoHighlightDetector:
109
  ).to(self.device)
110
 
111
  outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
112
- return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("Assistant: ")[1]
113
 
114
  def process_segment(self, video_path: str, highlight_types: str) -> bool:
115
  """Process a video segment and determine if it contains highlights."""
@@ -137,7 +137,7 @@ class VideoHighlightDetector:
137
  ).to(self.device)
138
 
139
  outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
140
- response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("Assistant: ")[1]
141
 
142
  return "yes" in response
143
 
 
81
  ).to(self.device)
82
 
83
  outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
84
+ return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
85
 
86
  def determine_highlights(self, video_description: str) -> str:
87
  """Determine what constitutes highlights based on video description."""
 
109
  ).to(self.device)
110
 
111
  outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
112
+ return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
113
 
114
  def process_segment(self, video_path: str, highlight_types: str) -> bool:
115
  """Process a video segment and determine if it contains highlights."""
 
137
  ).to(self.device)
138
 
139
  outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
140
+ response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
141
 
142
  return "yes" in response
143