Spaces:
Build error
Build error
Miquel Farre
commited on
Commit
·
a8bd881
1
Parent(s):
bd08551
v1
Browse files
app.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
-
import tempfile
|
| 5 |
import torch
|
| 6 |
import spaces
|
| 7 |
from pathlib import Path
|
| 8 |
-
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 9 |
import subprocess
|
| 10 |
import logging
|
|
|
|
|
|
|
| 11 |
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
|
@@ -16,16 +16,13 @@ def load_examples(json_path: str) -> dict:
|
|
| 16 |
with open(json_path, 'r') as f:
|
| 17 |
return json.load(f)
|
| 18 |
|
| 19 |
-
def format_duration(seconds:
|
| 20 |
-
hours = seconds // 3600
|
| 21 |
-
minutes = (seconds % 3600) // 60
|
| 22 |
-
secs = seconds % 60
|
| 23 |
-
|
| 24 |
-
return f"{hours}:{minutes:02d}:{secs:02d}"
|
| 25 |
-
return f"{minutes}:{secs:02d}"
|
| 26 |
|
| 27 |
def get_video_duration_seconds(video_path: str) -> float:
|
| 28 |
-
"""Use ffprobe to get video duration in seconds."""
|
| 29 |
cmd = [
|
| 30 |
"ffprobe",
|
| 31 |
"-v", "quiet",
|
|
@@ -51,12 +48,10 @@ class VideoHighlightDetector:
|
|
| 51 |
self.processor = AutoProcessor.from_pretrained(model_path)
|
| 52 |
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 53 |
model_path,
|
| 54 |
-
torch_dtype=torch.bfloat16
|
| 55 |
-
# _attn_implementation="flash_attention_2"
|
| 56 |
).to(device)
|
| 57 |
|
| 58 |
def analyze_video_content(self, video_path: str) -> str:
|
| 59 |
-
"""Analyze video content to determine its type and description."""
|
| 60 |
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
|
| 61 |
messages = [
|
| 62 |
{
|
|
@@ -83,24 +78,44 @@ class VideoHighlightDetector:
|
|
| 83 |
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
| 84 |
return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
|
| 85 |
|
| 86 |
-
def
|
| 87 |
-
"""
|
| 88 |
messages = [
|
| 89 |
{
|
| 90 |
"role": "system",
|
| 91 |
-
"content": [{"type": "text", "text": "
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"role": "user",
|
| 95 |
-
"content": [
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
Based on this description, list which rare segments should be included in a best of the best highlight."""}]
|
| 100 |
}
|
| 101 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
inputs = self.processor.apply_chat_template(
|
| 106 |
messages,
|
|
@@ -114,22 +129,15 @@ class VideoHighlightDetector:
|
|
| 114 |
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
|
| 115 |
|
| 116 |
def process_segment(self, video_path: str, highlight_types: str) -> bool:
|
| 117 |
-
"""Process a video segment and determine if it contains highlights."""
|
| 118 |
messages = [
|
| 119 |
{
|
| 120 |
"role": "user",
|
| 121 |
"content": [
|
| 122 |
{"type": "video", "path": video_path},
|
| 123 |
-
{"type": "text", "text": f"
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
Do you see any of those elements in the video? answer yes if you do and answer no if you don't."""}
|
| 127 |
]
|
| 128 |
}
|
| 129 |
]
|
| 130 |
-
|
| 131 |
-
print(messages)
|
| 132 |
-
|
| 133 |
|
| 134 |
inputs = self.processor.apply_chat_template(
|
| 135 |
messages,
|
|
@@ -141,82 +149,53 @@ class VideoHighlightDetector:
|
|
| 141 |
|
| 142 |
outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
|
| 143 |
response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
|
| 144 |
-
print(f"Segment response {response}")
|
| 145 |
return "yes" in response
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
]
|
| 185 |
-
|
| 186 |
-
logger.info(f"Running ffmpeg command: {' '.join(cmd)}")
|
| 187 |
-
subprocess.run(cmd, check=True)
|
| 188 |
|
| 189 |
def create_ui(examples_path: str, model_path: str):
|
| 190 |
examples_data = load_examples(examples_path)
|
| 191 |
|
| 192 |
with gr.Blocks() as app:
|
| 193 |
-
gr.Markdown("# Video Highlight Generator")
|
| 194 |
-
gr.Markdown("Upload a video and get an
|
| 195 |
|
| 196 |
-
with gr.Row():
|
| 197 |
-
gr.Markdown("## Example Results")
|
| 198 |
-
|
| 199 |
-
with gr.Row():
|
| 200 |
-
for example in examples_data["examples"]:
|
| 201 |
-
with gr.Column():
|
| 202 |
-
gr.Video(
|
| 203 |
-
value=example["original"]["url"],
|
| 204 |
-
label=f"Original ({format_duration(example['original']['duration_seconds'])})",
|
| 205 |
-
interactive=False
|
| 206 |
-
)
|
| 207 |
-
gr.Markdown(f"### {example['title']}")
|
| 208 |
-
|
| 209 |
-
with gr.Column():
|
| 210 |
-
gr.Video(
|
| 211 |
-
value=example["highlights"]["url"],
|
| 212 |
-
label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})",
|
| 213 |
-
interactive=False
|
| 214 |
-
)
|
| 215 |
-
with gr.Accordion("Chain of thought details", open=False):
|
| 216 |
-
gr.Markdown(f"### Summary:\n{example['analysis']['video_description']}")
|
| 217 |
-
gr.Markdown(f"### Highlights to search for:\n{example['analysis']['highlight_types']}")
|
| 218 |
-
|
| 219 |
-
gr.Markdown("## Try It Yourself!")
|
| 220 |
with gr.Row():
|
| 221 |
with gr.Column(scale=1):
|
| 222 |
input_video = gr.Video(
|
|
@@ -226,185 +205,128 @@ def create_ui(examples_path: str, model_path: str):
|
|
| 226 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 227 |
|
| 228 |
with gr.Column(scale=1):
|
| 229 |
-
|
| 230 |
-
label="Highlight
|
| 231 |
visible=False,
|
| 232 |
interactive=False,
|
| 233 |
)
|
| 234 |
-
|
| 235 |
status = gr.Markdown()
|
| 236 |
-
|
| 237 |
analysis_accordion = gr.Accordion(
|
| 238 |
-
"
|
| 239 |
open=True,
|
| 240 |
visible=False
|
| 241 |
)
|
| 242 |
|
| 243 |
with analysis_accordion:
|
| 244 |
-
video_description = gr.Markdown(""
|
| 245 |
-
highlight_types = gr.Markdown(""
|
| 246 |
|
| 247 |
@spaces.GPU
|
| 248 |
def on_process(video):
|
| 249 |
-
# Clear all components when starting new processing
|
| 250 |
-
yield [
|
| 251 |
-
"", # Clear status
|
| 252 |
-
"", # Clear video description
|
| 253 |
-
"", # Clear highlight types
|
| 254 |
-
gr.update(value=None, visible=False), # Clear video
|
| 255 |
-
gr.update(visible=False) # Hide accordion
|
| 256 |
-
]
|
| 257 |
-
|
| 258 |
if not video:
|
| 259 |
-
|
|
|
|
| 260 |
"Please upload a video",
|
| 261 |
"",
|
| 262 |
"",
|
| 263 |
-
gr.update(visible=False),
|
| 264 |
gr.update(visible=False)
|
| 265 |
]
|
| 266 |
-
return
|
| 267 |
|
| 268 |
try:
|
| 269 |
duration = get_video_duration_seconds(video)
|
| 270 |
-
if duration >
|
| 271 |
-
|
|
|
|
| 272 |
"Video must be shorter than 30 minutes",
|
| 273 |
"",
|
| 274 |
"",
|
| 275 |
-
gr.update(visible=False),
|
| 276 |
gr.update(visible=False)
|
| 277 |
]
|
| 278 |
-
return
|
| 279 |
|
| 280 |
-
|
| 281 |
-
"Initializing video highlight detector...",
|
| 282 |
-
"",
|
| 283 |
-
"",
|
| 284 |
-
gr.update(visible=False),
|
| 285 |
-
gr.update(visible=False)
|
| 286 |
-
]
|
| 287 |
-
|
| 288 |
-
detector = VideoHighlightDetector(
|
| 289 |
-
model_path=model_path,
|
| 290 |
-
batch_size=8
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
yield [
|
| 294 |
-
"Analyzing video content...",
|
| 295 |
-
"",
|
| 296 |
-
"",
|
| 297 |
-
gr.update(visible=False),
|
| 298 |
-
gr.update(visible=True)
|
| 299 |
-
]
|
| 300 |
|
|
|
|
| 301 |
video_desc = detector.analyze_video_content(video)
|
| 302 |
-
formatted_desc = f"### Summary:\n
|
| 303 |
-
|
| 304 |
-
yield [
|
| 305 |
-
"Determining highlight types...",
|
| 306 |
-
formatted_desc,
|
| 307 |
-
"",
|
| 308 |
-
gr.update(visible=False),
|
| 309 |
-
gr.update(visible=True)
|
| 310 |
-
]
|
| 311 |
|
|
|
|
| 312 |
highlights = detector.determine_highlights(video_desc)
|
| 313 |
-
formatted_highlights = f"###
|
| 314 |
-
|
| 315 |
-
# Split video into segments
|
| 316 |
-
temp_dir = "temp_segments"
|
| 317 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 318 |
|
|
|
|
| 319 |
segment_length = 10.0
|
| 320 |
-
duration = get_video_duration_seconds(video)
|
| 321 |
kept_segments = []
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
for start_time in range(0, int(duration), int(segment_length)):
|
| 326 |
-
segments_processed += 1
|
| 327 |
-
progress = int((segments_processed / total_segments) * 100)
|
| 328 |
-
|
| 329 |
-
yield [
|
| 330 |
-
f"Processing segments... {progress}% complete",
|
| 331 |
-
formatted_desc,
|
| 332 |
-
formatted_highlights,
|
| 333 |
-
gr.update(visible=False),
|
| 334 |
-
gr.update(visible=True)
|
| 335 |
-
]
|
| 336 |
-
|
| 337 |
-
# Create segment
|
| 338 |
-
segment_path = f"{temp_dir}/segment_{start_time}.mp4"
|
| 339 |
end_time = min(start_time + segment_length, duration)
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
# Remove temp directory
|
| 363 |
-
os.rmdir(temp_dir)
|
| 364 |
-
|
| 365 |
-
# Create final video
|
| 366 |
if kept_segments:
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
|
| 372 |
-
|
|
|
|
| 373 |
formatted_desc,
|
| 374 |
formatted_highlights,
|
| 375 |
-
gr.update(value=temp_output, visible=True),
|
| 376 |
gr.update(visible=True)
|
| 377 |
]
|
| 378 |
else:
|
| 379 |
-
|
|
|
|
| 380 |
"No highlights detected in the video.",
|
| 381 |
formatted_desc,
|
| 382 |
formatted_highlights,
|
| 383 |
-
gr.update(visible=False),
|
| 384 |
gr.update(visible=True)
|
| 385 |
]
|
| 386 |
|
| 387 |
except Exception as e:
|
| 388 |
logger.exception("Error processing video")
|
| 389 |
-
|
|
|
|
| 390 |
f"Error processing video: {str(e)}",
|
| 391 |
"",
|
| 392 |
"",
|
| 393 |
-
gr.update(visible=False),
|
| 394 |
gr.update(visible=False)
|
| 395 |
]
|
| 396 |
finally:
|
| 397 |
-
# Clean up
|
| 398 |
torch.cuda.empty_cache()
|
| 399 |
|
| 400 |
process_btn.click(
|
| 401 |
on_process,
|
| 402 |
inputs=[input_video],
|
| 403 |
outputs=[
|
|
|
|
| 404 |
status,
|
| 405 |
video_description,
|
| 406 |
highlight_types,
|
| 407 |
-
output_video,
|
| 408 |
analysis_accordion
|
| 409 |
],
|
| 410 |
queue=True,
|
|
@@ -413,10 +335,5 @@ def create_ui(examples_path: str, model_path: str):
|
|
| 413 |
return app
|
| 414 |
|
| 415 |
if __name__ == "__main__":
|
| 416 |
-
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 417 |
-
|
| 418 |
-
# Initialize CUDA
|
| 419 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 420 |
-
|
| 421 |
app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
| 422 |
app.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
from pathlib import Path
|
|
|
|
| 7 |
import subprocess
|
| 8 |
import logging
|
| 9 |
+
import xml.etree.ElementTree as ET
|
| 10 |
+
from xml.dom import minidom
|
| 11 |
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger(__name__)
|
|
|
|
| 16 |
with open(json_path, 'r') as f:
|
| 17 |
return json.load(f)
|
| 18 |
|
| 19 |
+
def format_duration(seconds: float) -> str:
|
| 20 |
+
hours = int(seconds // 3600)
|
| 21 |
+
minutes = int((seconds % 3600) // 60)
|
| 22 |
+
secs = int(seconds % 60)
|
| 23 |
+
return f"{hours:02d}:{minutes:02d}:{secs:02d}"
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def get_video_duration_seconds(video_path: str) -> float:
|
|
|
|
| 26 |
cmd = [
|
| 27 |
"ffprobe",
|
| 28 |
"-v", "quiet",
|
|
|
|
| 48 |
self.processor = AutoProcessor.from_pretrained(model_path)
|
| 49 |
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 50 |
model_path,
|
| 51 |
+
torch_dtype=torch.bfloat16
|
|
|
|
| 52 |
).to(device)
|
| 53 |
|
| 54 |
def analyze_video_content(self, video_path: str) -> str:
|
|
|
|
| 55 |
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
|
| 56 |
messages = [
|
| 57 |
{
|
|
|
|
| 78 |
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
| 79 |
return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
|
| 80 |
|
| 81 |
+
def analyze_segment(self, video_path: str) -> str:
|
| 82 |
+
"""Analyze a specific video segment and provide a brief description."""
|
| 83 |
messages = [
|
| 84 |
{
|
| 85 |
"role": "system",
|
| 86 |
+
"content": [{"type": "text", "text": "Describe what is happening in this specific video segment in a brief, concise way."}]
|
| 87 |
},
|
| 88 |
{
|
| 89 |
"role": "user",
|
| 90 |
+
"content": [
|
| 91 |
+
{"type": "video", "path": video_path},
|
| 92 |
+
{"type": "text", "text": "What is happening in this segment? Provide a brief description."}
|
| 93 |
+
]
|
|
|
|
| 94 |
}
|
| 95 |
]
|
| 96 |
+
|
| 97 |
+
inputs = self.processor.apply_chat_template(
|
| 98 |
+
messages,
|
| 99 |
+
add_generation_prompt=True,
|
| 100 |
+
tokenize=True,
|
| 101 |
+
return_dict=True,
|
| 102 |
+
return_tensors="pt"
|
| 103 |
+
).to(self.device)
|
| 104 |
+
|
| 105 |
+
outputs = self.model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7)
|
| 106 |
+
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
|
| 107 |
|
| 108 |
+
def determine_highlights(self, video_description: str) -> str:
|
| 109 |
+
messages = [
|
| 110 |
+
{
|
| 111 |
+
"role": "system",
|
| 112 |
+
"content": [{"type": "text", "text": "You are a professional video editor specializing in creating viral highlight reels."}]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"role": "user",
|
| 116 |
+
"content": [{"type": "text", "text": f"Based on this description, list which segments should be included in highlights: {video_description}"}]
|
| 117 |
+
}
|
| 118 |
+
]
|
| 119 |
|
| 120 |
inputs = self.processor.apply_chat_template(
|
| 121 |
messages,
|
|
|
|
| 129 |
return self.processor.decode(outputs[0], skip_special_tokens=True).split("Assistant: ")[1]
|
| 130 |
|
| 131 |
def process_segment(self, video_path: str, highlight_types: str) -> bool:
|
|
|
|
| 132 |
messages = [
|
| 133 |
{
|
| 134 |
"role": "user",
|
| 135 |
"content": [
|
| 136 |
{"type": "video", "path": video_path},
|
| 137 |
+
{"type": "text", "text": f"Do you see any of these elements in the video: {highlight_types}? Answer yes or no."}
|
|
|
|
|
|
|
|
|
|
| 138 |
]
|
| 139 |
}
|
| 140 |
]
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
inputs = self.processor.apply_chat_template(
|
| 143 |
messages,
|
|
|
|
| 149 |
|
| 150 |
outputs = self.model.generate(**inputs, max_new_tokens=64, do_sample=False)
|
| 151 |
response = self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
|
|
|
|
| 152 |
return "yes" in response
|
| 153 |
|
| 154 |
+
def create_xspf_playlist(video_path: str, segments: list, descriptions: list) -> str:
|
| 155 |
+
"""Create XSPF playlist from segments with descriptions."""
|
| 156 |
+
root = ET.Element("playlist", version="1", xmlns="http://xspf.org/ns/0/")
|
| 157 |
+
|
| 158 |
+
# Get video filename for the title
|
| 159 |
+
video_filename = os.path.basename(video_path)
|
| 160 |
+
title = ET.SubElement(root, "title")
|
| 161 |
+
title.text = f"{video_filename} - Highlights"
|
| 162 |
+
|
| 163 |
+
tracklist = ET.SubElement(root, "trackList")
|
| 164 |
+
|
| 165 |
+
for idx, ((start_time, end_time), description) in enumerate(zip(segments, descriptions)):
|
| 166 |
+
track = ET.SubElement(tracklist, "track")
|
| 167 |
+
|
| 168 |
+
location = ET.SubElement(track, "location")
|
| 169 |
+
location.text = f"file:///{video_filename}"
|
| 170 |
+
|
| 171 |
+
title = ET.SubElement(track, "title")
|
| 172 |
+
title.text = f"Highlight {idx + 1}"
|
| 173 |
+
|
| 174 |
+
annotation = ET.SubElement(track, "annotation")
|
| 175 |
+
annotation.text = description
|
| 176 |
+
|
| 177 |
+
start_meta = ET.SubElement(track, "meta", rel="start")
|
| 178 |
+
start_meta.text = format_duration(start_time)
|
| 179 |
+
|
| 180 |
+
end_meta = ET.SubElement(track, "meta", rel="end")
|
| 181 |
+
end_meta.text = format_duration(end_time)
|
| 182 |
+
|
| 183 |
+
# Add VLC extension
|
| 184 |
+
extension = ET.SubElement(root, "extension", application="http://www.videolan.org/vlc/playlist/0")
|
| 185 |
+
for i in range(len(segments)):
|
| 186 |
+
item = ET.SubElement(extension, "vlc:item", tid=str(i))
|
| 187 |
+
|
| 188 |
+
# Convert to string with pretty printing
|
| 189 |
+
xml_str = minidom.parseString(ET.tostring(root)).toprettyxml(indent=" ")
|
| 190 |
+
return xml_str
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
def create_ui(examples_path: str, model_path: str):
|
| 193 |
examples_data = load_examples(examples_path)
|
| 194 |
|
| 195 |
with gr.Blocks() as app:
|
| 196 |
+
gr.Markdown("# Video Highlight Playlist Generator")
|
| 197 |
+
gr.Markdown("Upload a video and get an XSPF playlist of highlights!")
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
with gr.Row():
|
| 200 |
with gr.Column(scale=1):
|
| 201 |
input_video = gr.Video(
|
|
|
|
| 205 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 206 |
|
| 207 |
with gr.Column(scale=1):
|
| 208 |
+
output_playlist = gr.File(
|
| 209 |
+
label="Highlight Playlist (XSPF)",
|
| 210 |
visible=False,
|
| 211 |
interactive=False,
|
| 212 |
)
|
|
|
|
| 213 |
status = gr.Markdown()
|
| 214 |
+
|
| 215 |
analysis_accordion = gr.Accordion(
|
| 216 |
+
"Analysis Details",
|
| 217 |
open=True,
|
| 218 |
visible=False
|
| 219 |
)
|
| 220 |
|
| 221 |
with analysis_accordion:
|
| 222 |
+
video_description = gr.Markdown("")
|
| 223 |
+
highlight_types = gr.Markdown("")
|
| 224 |
|
| 225 |
@spaces.GPU
|
| 226 |
def on_process(video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
if not video:
|
| 228 |
+
return [
|
| 229 |
+
None,
|
| 230 |
"Please upload a video",
|
| 231 |
"",
|
| 232 |
"",
|
|
|
|
| 233 |
gr.update(visible=False)
|
| 234 |
]
|
|
|
|
| 235 |
|
| 236 |
try:
|
| 237 |
duration = get_video_duration_seconds(video)
|
| 238 |
+
if duration > 18000: # 300 minutes
|
| 239 |
+
return [
|
| 240 |
+
None,
|
| 241 |
"Video must be shorter than 30 minutes",
|
| 242 |
"",
|
| 243 |
"",
|
|
|
|
| 244 |
gr.update(visible=False)
|
| 245 |
]
|
|
|
|
| 246 |
|
| 247 |
+
detector = VideoHighlightDetector(model_path=model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
# Analyze video content
|
| 250 |
video_desc = detector.analyze_video_content(video)
|
| 251 |
+
formatted_desc = f"### Video Summary:\n{video_desc}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
# Determine highlight types
|
| 254 |
highlights = detector.determine_highlights(video_desc)
|
| 255 |
+
formatted_highlights = f"### Highlight Criteria:\n{highlights}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
# Process video in segments
|
| 258 |
segment_length = 10.0
|
|
|
|
| 259 |
kept_segments = []
|
| 260 |
+
segment_descriptions = []
|
| 261 |
+
|
|
|
|
| 262 |
for start_time in range(0, int(duration), int(segment_length)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
end_time = min(start_time + segment_length, duration)
|
| 264 |
|
| 265 |
+
# Create temporary segment
|
| 266 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4') as temp_segment:
|
| 267 |
+
cmd = [
|
| 268 |
+
"ffmpeg",
|
| 269 |
+
"-y",
|
| 270 |
+
"-i", video,
|
| 271 |
+
"-ss", str(start_time),
|
| 272 |
+
"-t", str(segment_length),
|
| 273 |
+
"-c:v", "libx264",
|
| 274 |
+
"-preset", "ultrafast",
|
| 275 |
+
temp_segment.name
|
| 276 |
+
]
|
| 277 |
+
subprocess.run(cmd, check=True)
|
| 278 |
+
|
| 279 |
+
if detector.process_segment(temp_segment.name, highlights):
|
| 280 |
+
# Get segment description
|
| 281 |
+
description = detector.analyze_segment(temp_segment.name)
|
| 282 |
+
kept_segments.append((start_time, end_time))
|
| 283 |
+
segment_descriptions.append(description)
|
| 284 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
if kept_segments:
|
| 286 |
+
# Create XSPF playlist
|
| 287 |
+
playlist_content = create_xspf_playlist(video, kept_segments, segment_descriptions)
|
| 288 |
+
|
| 289 |
+
# Save playlist to temporary file
|
| 290 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.xspf', delete=False) as f:
|
| 291 |
+
f.write(playlist_content)
|
| 292 |
+
playlist_path = f.name
|
| 293 |
|
| 294 |
+
return [
|
| 295 |
+
gr.update(value=playlist_path, visible=True),
|
| 296 |
+
"Processing complete! Download the XSPF playlist.",
|
| 297 |
formatted_desc,
|
| 298 |
formatted_highlights,
|
|
|
|
| 299 |
gr.update(visible=True)
|
| 300 |
]
|
| 301 |
else:
|
| 302 |
+
return [
|
| 303 |
+
None,
|
| 304 |
"No highlights detected in the video.",
|
| 305 |
formatted_desc,
|
| 306 |
formatted_highlights,
|
|
|
|
| 307 |
gr.update(visible=True)
|
| 308 |
]
|
| 309 |
|
| 310 |
except Exception as e:
|
| 311 |
logger.exception("Error processing video")
|
| 312 |
+
return [
|
| 313 |
+
None,
|
| 314 |
f"Error processing video: {str(e)}",
|
| 315 |
"",
|
| 316 |
"",
|
|
|
|
| 317 |
gr.update(visible=False)
|
| 318 |
]
|
| 319 |
finally:
|
|
|
|
| 320 |
torch.cuda.empty_cache()
|
| 321 |
|
| 322 |
process_btn.click(
|
| 323 |
on_process,
|
| 324 |
inputs=[input_video],
|
| 325 |
outputs=[
|
| 326 |
+
output_playlist,
|
| 327 |
status,
|
| 328 |
video_description,
|
| 329 |
highlight_types,
|
|
|
|
| 330 |
analysis_accordion
|
| 331 |
],
|
| 332 |
queue=True,
|
|
|
|
| 335 |
return app
|
| 336 |
|
| 337 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
app = create_ui("video_spec.json", "HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
| 339 |
app.launch()
|