Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,594 Bytes
3210048 5193654 a6eea5e 3210048 237abf7 a6eea5e 3210048 d5809a1 a6eea5e 50d6b20 5193654 d5809a1 64547c7 5193654 a5769c3 d5809a1 a6eea5e 5193654 b0b7bea a6eea5e 50d6b20 e0123d5 a6eea5e e0123d5 a6eea5e e0123d5 a6eea5e f9694e5 a6eea5e 5193654 3210048 5193654 a6eea5e 5193654 a6eea5e 5193654 50d6b20 a6eea5e 5193654 c3e1273 a6eea5e 50d6b20 5193654 a6eea5e 5193654 f9694e5 5193654 a6eea5e 5193654 50d6b20 5193654 a6eea5e 5193654 a6eea5e 50d6b20 a6eea5e 50d6b20 a6eea5e 50d6b20 a6eea5e 50d6b20 a6eea5e 50d6b20 7f5b062 50d6b20 7f5b062 50d6b20 a6eea5e 50d6b20 a6eea5e 50d6b20 a6eea5e d5809a1 a6eea5e 3210048 d5809a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import numpy as np
import spaces
import torch
import spaces
import random
from diffusers import FluxPipeline
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxPipeline.from_pretrained("Himanshu806/FluxHyperReal", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("Himanshu806/testLora")
# pipe.enable_sequential_cpu_offload()
# pipe.enable_fp16()
pipe.enable_lora()
@spaces.GPU(durations=300)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
image = pipe(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
# lora_scale=0.75 // not supported in this version
).images[0]
output_image_jpg = image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# return image, seed
examples = [
"photography of a young woman, accent lighting, (front view:1.4), "
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
""")
with gr.Row():
with gr.Column():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.5,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |