Himanshu806 commited on
Commit
d5809a1
·
verified ·
1 Parent(s): 5558f02

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -326
app.py CHANGED
@@ -6,69 +6,20 @@ import torch
6
  import spaces
7
  import random
8
 
9
- from diffusers import FluxFillPipeline
10
  from PIL import Image
11
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
16
- pipe = FluxFillPipeline.from_pretrained("Himanshu806/FluxHyperReal", torch_dtype=torch.bfloat16).to("cuda")
17
- # pipe.enable_sequential_cpu_offload()
18
- # pipe.enable_fp16()
19
- # pipe.vae.enable_slicing()
20
- # pipe.vae.enable_tiling()
21
-
22
- def calculate_optimal_dimensions(image: Image.Image):
23
- # Extract the original dimensions
24
- original_width, original_height = image.size
25
-
26
- # Set constants
27
- MIN_ASPECT_RATIO = 9 / 16
28
- MAX_ASPECT_RATIO = 16 / 9
29
- FIXED_DIMENSION = 1024
30
-
31
- # Calculate the aspect ratio of the original image
32
- original_aspect_ratio = original_width / original_height
33
-
34
- # Determine which dimension to fix
35
- if original_aspect_ratio > 1: # Wider than tall
36
- width = FIXED_DIMENSION
37
- height = round(FIXED_DIMENSION / original_aspect_ratio)
38
- else: # Taller than wide
39
- height = FIXED_DIMENSION
40
- width = round(FIXED_DIMENSION * original_aspect_ratio)
41
-
42
- # Ensure dimensions are multiples of 8
43
- width = (width // 8) * 8
44
- height = (height // 8) * 8
45
-
46
- # Enforce aspect ratio limits
47
- calculated_aspect_ratio = width / height
48
- if calculated_aspect_ratio > MAX_ASPECT_RATIO:
49
- width = (height * MAX_ASPECT_RATIO // 8) * 8
50
- elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
51
- height = (width / MIN_ASPECT_RATIO // 8) * 8
52
-
53
- # Ensure width and height remain above the minimum dimensions
54
- width = max(width, 576) if width == FIXED_DIMENSION else width
55
- height = max(height, 576) if height == FIXED_DIMENSION else height
56
-
57
- return width, height
58
 
59
  @spaces.GPU(durations=300)
60
- def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
61
- # pipe.enable_xformers_memory_efficient_attention()
62
-
63
- image = edit_images["background"]
64
- width, height = calculate_optimal_dimensions(image)
65
- mask = edit_images["layers"][0]
66
- if randomize_seed:
67
- seed = random.randint(0, MAX_SEED)
68
  image = pipe(
69
  prompt=prompt,
70
- image=image,
71
- mask_image=mask,
72
  height=height,
73
  width=width,
74
  guidance_scale=guidance_scale,
@@ -104,15 +55,6 @@ with gr.Blocks(css=css) as demo:
104
  """)
105
  with gr.Row():
106
  with gr.Column():
107
- edit_image = gr.ImageEditor(
108
- label='Upload and draw mask for inpainting',
109
- type='pil',
110
- sources=["upload", "webcam"],
111
- image_mode='RGB',
112
- layers=False,
113
- brush=gr.Brush(colors=["#FFFFFF"]),
114
- # height=600
115
- )
116
  prompt = gr.Text(
117
  label="Prompt",
118
  show_label=False,
@@ -177,270 +119,8 @@ with gr.Blocks(css=css) as demo:
177
  gr.on(
178
  triggers=[run_button.click, prompt.submit],
179
  fn = infer,
180
- inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
181
  outputs = [result, seed]
182
  )
183
 
184
- demo.launch()
185
-
186
-
187
- # import gradio as gr
188
- # import numpy as np
189
- # import torch
190
- # import random
191
- # from PIL import Image
192
- # import cv2
193
- # import spaces
194
-
195
- # # ------------------ Inpainting Pipeline Setup ------------------ #
196
- # from diffusers import FluxFillPipeline
197
-
198
- # MAX_SEED = np.iinfo(np.int32).max
199
- # MAX_IMAGE_SIZE = 2048
200
-
201
- # pipe = FluxFillPipeline.from_pretrained(
202
- # "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
203
- # )
204
- # pipe.load_lora_weights("alvdansen/flux-koda")
205
- # pipe.enable_lora()
206
-
207
- # def calculate_optimal_dimensions(image: Image.Image):
208
- # # Extract the original dimensions
209
- # original_width, original_height = image.size
210
-
211
- # # Set constants
212
- # MIN_ASPECT_RATIO = 9 / 16
213
- # MAX_ASPECT_RATIO = 16 / 9
214
- # FIXED_DIMENSION = 1024
215
-
216
- # # Calculate the aspect ratio of the original image
217
- # original_aspect_ratio = original_width / original_height
218
-
219
- # # Determine which dimension to fix
220
- # if original_aspect_ratio > 1: # Wider than tall
221
- # width = FIXED_DIMENSION
222
- # height = round(FIXED_DIMENSION / original_aspect_ratio)
223
- # else: # Taller than wide
224
- # height = FIXED_DIMENSION
225
- # width = round(FIXED_DIMENSION * original_aspect_ratio)
226
-
227
- # # Ensure dimensions are multiples of 8
228
- # width = (width // 8) * 8
229
- # height = (height // 8) * 8
230
-
231
- # # Enforce aspect ratio limits
232
- # calculated_aspect_ratio = width / height
233
- # if calculated_aspect_ratio > MAX_ASPECT_RATIO:
234
- # width = (height * MAX_ASPECT_RATIO // 8) * 8
235
- # elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
236
- # height = (width / MIN_ASPECT_RATIO // 8) * 8
237
-
238
- # # Ensure minimum dimensions are met
239
- # width = max(width, 576) if width == FIXED_DIMENSION else width
240
- # height = max(height, 576) if height == FIXED_DIMENSION else height
241
-
242
- # return width, height
243
-
244
- # # ------------------ SAM (Transformers) Imports and Initialization ------------------ #
245
- # from transformers import SamModel, SamProcessor
246
-
247
- # # Load the model and processor from Hugging Face.
248
- # sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
249
- # sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
250
-
251
- # @spaces.GPU(durations=300)
252
- # def generate_mask_with_sam(image: Image.Image, mask_prompt: str):
253
- # """
254
- # Generate a segmentation mask using SAM (via Hugging Face Transformers).
255
-
256
- # The mask_prompt is expected to be a comma-separated string of two integers,
257
- # e.g. "450,600" representing an (x,y) coordinate in the image.
258
-
259
- # The function converts the coordinate into the proper input format for SAM and returns a binary mask.
260
- # """
261
- # if mask_prompt.strip() == "":
262
- # raise ValueError("No mask prompt provided.")
263
-
264
- # try:
265
- # # Parse the mask_prompt into a coordinate
266
- # coords = [int(x.strip()) for x in mask_prompt.split(",")]
267
- # if len(coords) != 2:
268
- # raise ValueError("Expected two comma-separated integers (x,y).")
269
- # except Exception as e:
270
- # raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e))
271
-
272
- # # The SAM processor expects a list of input points.
273
- # # Format the point as a list of lists; here we assume one point per image.
274
- # # (The Transformers SAM expects the points in [x, y] order.)
275
- # input_points = [coords] # e.g. [[450,600]]
276
- # # Optionally, you can supply input_labels (1 for foreground, 0 for background)
277
- # input_labels = [1]
278
-
279
- # # Prepare the inputs for the SAM processor.
280
- # inputs = sam_processor(images=image,
281
- # input_points=[input_points],
282
- # input_labels=[input_labels],
283
- # return_tensors="pt")
284
-
285
- # # Move tensors to the same device as the model.
286
- # device = next(sam_model.parameters()).device
287
- # inputs = {k: v.to(device) for k, v in inputs.items()}
288
-
289
- # # Forward pass through SAM.
290
- # with torch.no_grad():
291
- # outputs = sam_model(**inputs)
292
-
293
- # # The output contains predicted masks; we take the first mask from the first prompt.
294
- # # (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W))
295
- # pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W)
296
- # mask = pred_masks[0][0].detach().cpu().numpy()
297
-
298
- # # Convert the mask to binary (0 or 255) using a threshold.
299
- # mask_bin = (mask > 0.5).astype(np.uint8) * 255
300
- # mask_pil = Image.fromarray(mask_bin)
301
- # return mask_pil
302
-
303
- # # ------------------ Inference Function ------------------ #
304
- # @spaces.GPU(durations=300)
305
- # def infer(edit_images, prompt, mask_prompt,
306
- # seed=42, randomize_seed=False, width=1024, height=1024,
307
- # guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
308
- # # Get the base image from the "background" layer.
309
- # image = edit_images["background"]
310
- # width, height = calculate_optimal_dimensions(image)
311
-
312
- # # If a mask prompt is provided, use the SAM-based mask generator.
313
- # if mask_prompt and mask_prompt.strip() != "":
314
- # try:
315
- # mask = generate_mask_with_sam(image, mask_prompt)
316
- # except Exception as e:
317
- # raise ValueError("Error generating mask from prompt: " + str(e))
318
- # else:
319
- # # Fall back to using a manually drawn mask (from the first layer).
320
- # try:
321
- # mask = edit_images["layers"][0]
322
- # except (TypeError, IndexError):
323
- # raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.")
324
-
325
- # if randomize_seed:
326
- # seed = random.randint(0, MAX_SEED)
327
-
328
- # # Run the inpainting diffusion pipeline with the provided prompt and mask.
329
- # image_out = pipe(
330
- # prompt=prompt,
331
- # image=image,
332
- # mask_image=mask,
333
- # height=height,
334
- # width=width,
335
- # guidance_scale=guidance_scale,
336
- # num_inference_steps=num_inference_steps,
337
- # generator=torch.Generator(device='cuda').manual_seed(seed),
338
- # ).images[0]
339
-
340
- # output_image_jpg = image_out.convert("RGB")
341
- # output_image_jpg.save("output.jpg", "JPEG")
342
- # return output_image_jpg, seed
343
-
344
- # # ------------------ Gradio UI ------------------ #
345
- # css = """
346
- # #col-container {
347
- # margin: 0 auto;
348
- # max-width: 1000px;
349
- # }
350
- # """
351
-
352
- # with gr.Blocks(css=css) as demo:
353
- # with gr.Column(elem_id="col-container"):
354
- # gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation")
355
- # with gr.Row():
356
- # with gr.Column():
357
- # # The image editor now allows you to optionally draw a mask.
358
- # edit_image = gr.ImageEditor(
359
- # label='Upload Image (and optionally draw a mask)',
360
- # type='pil',
361
- # sources=["upload", "webcam"],
362
- # image_mode='RGB',
363
- # layers=False, # We will generate a mask automatically if needed.
364
- # brush=gr.Brush(colors=["#FFFFFF"]),
365
- # )
366
- # prompt = gr.Text(
367
- # label="Inpainting Prompt",
368
- # show_label=False,
369
- # max_lines=2,
370
- # placeholder="Enter your inpainting prompt",
371
- # container=False,
372
- # )
373
- # mask_prompt = gr.Text(
374
- # label="Mask Prompt (enter a coordinate as 'x,y')",
375
- # show_label=True,
376
- # placeholder="E.g. 450,600",
377
- # container=True,
378
- # )
379
- # generate_mask_btn = gr.Button("Generate Mask")
380
- # mask_preview = gr.Image(label="Mask Preview", show_label=True)
381
- # run_button = gr.Button("Run")
382
- # result = gr.Image(label="Result", show_label=False)
383
-
384
- # # Button to preview the generated mask.
385
- # def on_generate_mask(image, mask_prompt):
386
- # if image is None or mask_prompt.strip() == "":
387
- # return None
388
- # mask = generate_mask_with_sam(image, mask_prompt)
389
- # return mask
390
-
391
- # generate_mask_btn.click(
392
- # fn=on_generate_mask,
393
- # inputs=[edit_image, mask_prompt],
394
- # outputs=[mask_preview]
395
- # )
396
-
397
- # with gr.Accordion("Advanced Settings", open=False):
398
- # seed = gr.Slider(
399
- # label="Seed",
400
- # minimum=0,
401
- # maximum=MAX_SEED,
402
- # step=1,
403
- # value=0,
404
- # )
405
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
406
- # with gr.Row():
407
- # width = gr.Slider(
408
- # label="Width",
409
- # minimum=256,
410
- # maximum=MAX_IMAGE_SIZE,
411
- # step=32,
412
- # value=1024,
413
- # visible=False
414
- # )
415
- # height = gr.Slider(
416
- # label="Height",
417
- # minimum=256,
418
- # maximum=MAX_IMAGE_SIZE,
419
- # step=32,
420
- # value=1024,
421
- # visible=False
422
- # )
423
- # with gr.Row():
424
- # guidance_scale = gr.Slider(
425
- # label="Guidance Scale",
426
- # minimum=1,
427
- # maximum=30,
428
- # step=0.5,
429
- # value=3.5,
430
- # )
431
- # num_inference_steps = gr.Slider(
432
- # label="Number of Inference Steps",
433
- # minimum=1,
434
- # maximum=50,
435
- # step=1,
436
- # value=28,
437
- # )
438
-
439
- # gr.on(
440
- # triggers=[run_button.click, prompt.submit],
441
- # fn=infer,
442
- # inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
443
- # outputs=[result, seed]
444
- # )
445
-
446
- # demo.launch()
 
6
  import spaces
7
  import random
8
 
9
+ from diffusers import FluxPipeline
10
  from PIL import Image
11
 
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
16
+ pipe = FluxPipeline.from_pretrained("Himanshu806/FluxHyperReal", torch_dtype=torch.bfloat16).to("cuda")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  @spaces.GPU(durations=300)
19
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
20
+
 
 
 
 
 
 
21
  image = pipe(
22
  prompt=prompt,
 
 
23
  height=height,
24
  width=width,
25
  guidance_scale=guidance_scale,
 
55
  """)
56
  with gr.Row():
57
  with gr.Column():
 
 
 
 
 
 
 
 
 
58
  prompt = gr.Text(
59
  label="Prompt",
60
  show_label=False,
 
119
  gr.on(
120
  triggers=[run_button.click, prompt.submit],
121
  fn = infer,
122
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
123
  outputs = [result, seed]
124
  )
125
 
126
+ demo.launch()